

Kupní smlouva

(dále jen **"Smlouva"**) uzavřená v souladu s ustanovením § 2079 a násl. zákona č. 89/2012 Sb., občanský zákoník (dále jen "**OZ**")

1. <u>SMLUVNÍ STRANY</u>

1.1 Fyzikální ústav AV ČR, v. v. i.,

se sídlem: Na Slovance 1999/2, 182 00 Praha 8, jednající: RNDr. Michael Prouza, Ph.D., ředitel,

zapsaný v rejstříku veřejných výzkumných institucí Ministerstva školství, mládeže

a tělovýchovy České republiky.

IČO: 68378271 DIČ: CZ68378271

Bankovní spojení:

Číslo účtu:

(dále jen "**Kupující**")

а

1.2 TESTOVACÍ TECHNIKA s.r.o,

se sídlem: Československé armády 923/15, 290 01 Poděbrady,

jednající: Ing. Bohumil Kvapil, jednatel,

zapsaná v obchodním rejstříku u Městského soudu v Praze, oddíl C, vložka 72744.

IČO: 26129507 DIČ: CZ26129507

Bankovní spojení:

Číslo účtu:

(dále jen "Prodávající"),

(dále společně jen "Smluvní strany" nebo každý z nich samostatně jen "Smluvní strana").

2. ZÁKLADNÍ USTANOVENÍ

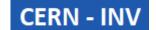
- 2.1 Kupující je účastníkem v postavení příjemce projektu reg. č. CZ.02.01.01/00/23_015/0008198 v rámci Operačního programu Jan Amos Komenský (dále jen "OP JAK") s názvem "Investice pro VI CERN-CZ" (dále jen "Projekt"), pro nějž je určen předmět plnění dle této Smlouvy a z jeho podpory je též spolufinancován.
- 2.2 Kupující pořizuje předmět plnění dle Smlouvy za účelem vývoje a testování polovodičových detektorů vysokoenergetických částic.
- 2.3 Prodávající je vybraným dodavatelem zadávacího řízení k veřejné zakázce vyhlášené Kupujícím dle zákona č. 134/2016 Sb., o zadávání veřejných zakázek, v platném znění, pod názvem "6 GHz osciloskop" (dále jen "Zadávací řízení") na dodání předmětu plnění dle Smlouvy.
- 2.4 Výchozími podklady pro dodání předmětu plnění dle Smlouvy jsou
 - 2.4.1 **Technické specifikace** předmětu plnění jako **Příloha č. 1**
 - 2.4.2 Nabídka Prodávajícího podaná v rámci Zadávacího řízení v rozsahu té části, která předmět plnění technicky popisuje (dále jen "**Nabídka**") jako **Příloha č. 2**.

V případě kolize Smlouvy a některé z Příloh nebo Příloh navzájem má přednost technický požadavek vyšší úrovně a jakosti nebo ustanovení výhodnější pro Kupujícího.

- 2.5 Prodávající prohlašuje, že disponuje veškerými odbornými předpoklady potřebnými pro dodání předmětu plnění, k činnosti dle Smlouvy je oprávněn a na jeho straně neexistují žádné překážky, které by mu bránily předmět plnění dle Smlouvy dodat.
- 2.6 Prodávající bere na vědomí, že dodání předmětu plnění ve stanovené době a kvalitě, jak vyplývá z Příloh č. 1 a 2 (včetně předání a vyúčtování), je pro Kupujícího zásadní. V případě, že Prodávající nesplní smluvní požadavky, může Kupujícímu vzniknout škoda.

3. PŘEDMĚT SMLOUVY

3.1 Předmětem této Smlouvy je závazek Prodávajícího dodat Kupujícímu


6 GHz osciloskop

specifikovaný v Přílohách č. 1 a 2 (dále jen **"Zařízení"**) a převést na Kupujícího vlastnické právo k Zařízení a závazek Kupujícího Zařízení převzít a zaplatit Prodávajícímu sjednanou kupní cenu.

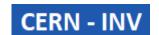
- 3.2 Součástí plnění je:
 - 3.2.1 doprava Zařízení dle Příloh č. 1 a 2 do místa plnění,
 - 3.2.2 dodání instrukcí a návodů k obsluze a údržbě Zařízení a ostatní dokumentace dle článku 9. v českém nebo anglickém jazyce Kupujícímu, a to v elektronické

nebo tištěné podobě,

- 3.2.3 záruční servis,
- 3.2.4 zajištění technické podpory.
- 3.3 Prodávající odpovídá za to, že Zařízení bude v souladu s touto Smlouvou včetně Příloh, platnými technickými a kvalitativními normami, a že jej Kupující bude moci užívat k danému účelu. V případě kolize norem platí vždy norma nebo ta její část, v níž jsou stanovena přísnější kritéria.
- 3.4 Zařízení a všechny jeho součásti musí být nové, nepoužité.

4. DOBA PLNĚNÍ

- 4.1 Prodávající je povinen oznámit Kupujícímu termín dodání Zařízení v předstihu alespoň 2 týdnů. Termín dodání podléhá souhlasu Kupujícího.
- 4.2 Prodávající se zavazuje Zařízení dodat **do 2 měsíců** ode dne uzavření Smlouvy.


5. CENA, FAKTURACE, PLACENÍ

- 5.1 Kupní cena vychází z Nabídky a činí **2 074 580,- Kč** (slovy: dva miliony sedmdesát čtyři tisíce pět set osmdesát Korun českých) bez daně z přidané hodnoty (dále jen **"Kupní Cena"**).
- 5.2 Kupní Cena zahrnuje veškeré plnění Prodávajícího směřující ke splnění požadavků Kupujícího dle této Smlouvy, včetně veškerých poplatků, cla, pojištění, nákladů na dopravu apod.
- 5.3 Kupní Cenu je Prodávající oprávněn fakturovat po řádném odevzdání Zařízení dle čl. 9. Smlouvy a v případě, že bude Zařízení dodáno s vadami nebo nedodělky dle odst. 9.6 Smlouvy, pak teprve po jejich odstranění. Daň z přidané hodnoty vypořádají Smluvní strany dle platných českých právních předpisů.
- 5.4 Daňové doklady faktury vystavené Prodávajícím na základě této Smlouvy musí obsahovat všechny náležitosti stanovené zákonem č. 235/2004 Sb., o dani z přidané hodnoty, v platném znění, číslo této Smlouvy a údaj o tom, že Zařízení je dodáváno pro účely projektu "Investice pro VI CERN-CZ", reg. č. CZ.02.01.01/00/23_015/0008198.
- 5.5 Kupující preferuje elektronickou fakturaci na elektronickou adresu <u>efaktury@fzu.cz</u>. Vystavené faktury nesmí být v rozporu s mezinárodními dohodami o zamezení dvojího zdanění, budou-li se na konkrétní případ vztahovat.
- 5.6 Lhůta splatnosti daňových dokladů je třicet (30) dnů od data jejich doručení Kupujícímu. Zaplacením účtované částky se rozumí den jejího odeslání na účet Prodávajícího.
- 5.7 Pokud faktura nebude vystavena v souladu s platebními podmínkami stanovenými Smlouvou nebo nebude splňovat požadované zákonné náležitosti, je Kupující oprávněn ji Prodávajícímu vrátit jako neúplnou k doplnění, resp. nesprávně vystavenou k novému

vystavení, a to ve lhůtě pěti (5) pracovních dnů od data jejího doručení Kupujícímu. Kupující přitom není v prodlení s úhradou Kupní Ceny nebo její části. Nová lhůta splatnosti začne plynout dnem doručení opravené nebo nově vyhotovené faktury Kupujícímu.

- 5.8 Kupující je oprávněn pozastavit či jednostranně započítat proti pohledávkám Prodávajícího kteroukoli z plateb z důvodu:
 - 5.8.1 škody způsobené Prodávajícím,
 - 5.8.2 smluvní pokuty.
- 5.9 Prodávající není oprávněn započítat žádnou svou pohledávku proti pohledávce Kupujícího z této Smlouvy.

6. VLASTNICKÉ PRÁVO

Vlastnické právo k Zařízení a zároveň i související nebezpečí škody přechází na Kupujícího řádným odevzdáním Zařízení dle čl. 9. Smlouvy.

7. MÍSTO PLNĚNÍ

Místem plnění je místnost č. 76 v budově Ústavu teorie informace a automatizace AV ČR (UTIA), na adrese Pod vodárenskou věží 1143/4, 182 00 Praha 8.

8. SOUČINNOST SMLUVNÍCH STRAN

- 8.1 Prodávající se zavazuje upozornit Kupujícího na případné překážky na své straně, které mohou negativně ovlivnit řádné dodání Zařízení.
- 8.2 Prodávající je povinen upozornit Kupujícího na nevhodně provedenou připravenost místa plnění, pokud je to možné.
- 8.3 Prodávající se zavazuje poskytnout Kupujícímu součinnost v případě kontrol oprávněných subjektů v souvislosti s Projektem.

9. <u>DODÁNÍ, ODEVZDÁNÍ</u>

- 9.1 Prodávající na své náklady přepraví Zařízení do místa plnění dle článku 7. Je-li dodávka neporušená, vystaví Kupující Prodávajícímu dodací list.
- 9.2 Součástí dodávky je technická dokumentace vztahující se k Zařízení, návod k užívání, prohlášení o shodě dodaného Zařízení, všech jeho součástí a příslušenství se schválenými standardy.
- 9.3 Prodávající splní svoji povinnost odevzdat Zařízení jeho dodáním Kupujícímu, které Kupující následně potvrdí zápisem o převzetí Zařízení. Zápis obsahuje tyto povinné náležitosti:
 - 9.3.1 Identifikační údaje Prodávajícího, Kupujícího a případných subdodavatelů,

- 9.3.2 popis Zařízení včetně soupisu komponent a všech sériových / výrobních čísel,
- 9.3.3 seznam technické dokumentace včetně manuálu,
- 9.3.4 případná výhrada Kupujícího týkající se drobných vad a způsobu a doby jejich odstranění a
- 9.3.5 datum vyhotovení.
- 9.4 Odevzdání Zařízení nezbavuje Prodávajícího odpovědnosti za škody vzniklé v důsledku vad Zařízení.
- 9.5 Kupující není povinen převzít Zařízení, které by vykazovalo vady, byť by tyto samy o sobě ani ve spojení s jinými nebránily užívání Zařízení. V takovém případě vydá Kupující Prodávajícímu zápis o nepřevzetí Zařízení s uvedením důvodu.
- 9.6 Nevyužije-li Kupující svého práva dle předchozího odstavce, uvede v zápisu o převzetí Zařízení soupis zjištěných vad včetně způsobu a termínu jejich odstranění. Nedojde-li k dohodě mezi Smluvními stranami o termínu odstranění vad, platí, že vady mají být odstraněny ve lhůtě 120 hodin od okamžiku písemného oznámení Prodávajícímu.
- 9.7 Lhůta pro prohlídku Zařízení po jeho rozbalení za účelem kontroly vlastností a kompletnosti Zařízení a pro vyhotovení zápisu o převzetí Zařízení je 5 pracovních dnů následujících po dni jeho dodání.

10. ZAJIŠTĚNÍ TECHNICKÉ PODPORY

Prodávající je povinen poskytovat Kupujícímu bezplatné konzultace a technickou podporu vztahující se k předmětu plnění po dobu trvání záruční doby. Prodávající se zavazuje poskytnout Kupujícímu konzultace a technickou podporu vztahující se k předmětu plnění i v pozáruční době.

11. ZÁSTUPCI, OZNAMOVÁNÍ:

11.1 Prodávající zmocnil tyto zástupce odpovědné za dodávku Zařízení a komunikaci s Kupujícím:

11.2 Kupující zmocnil tyto zástupce odpovědné za převzetí Zařízení a komunikaci s Prodávajícím:

11.3 Osoby dle odst. 11.1 a 11.2 lze změnit jednostranným písemným prohlášením Smluvní strany doručeným druhé Smluvní straně.

- 11.4 Veškerá oznámení učiněná mezi Smluvními stranami podle této Smlouvy musí být vyhotovena písemně a doručena druhé Smluvní straně osobně (s písemným potvrzením o převzetí) nebo doporučeným dopisem (na adresu Kupujícího či Prodávajícího uvedenou v záhlaví Smlouvy) nebo elektronicky prostřednictvím datové schránky nebo e-mailem se zaručeným elektronickým podpisem na adresu epodatelna@fzu.cz v případě Kupujícího a teste@teste.cz v případě Prodávajícího.
- 11.5 Ve věcech odborných nebo technických (oznámení potřeby záručního servisu apod.) je přípustná elektronická komunikace prostřednictvím osob dle odst. 11.1 a 11.2 na zde uvedené e-mailové adresy.

12. PŘEDČASNÉ UKONČENÍ SMLOUVY

- 12.1 Kupující je oprávněn od Smlouvy odstoupit bez jakýchkoliv sankcí na jeho straně, nastane-li některá z níže uvedených skutečností:
 - 12.1.1 Prodávající nedodá Zařízení ani v dodatečné 4 týdenní lhůtě po uplynutí lhůty dle odst. 4.2 Smlouvy,
 - 12.1.2 při dodání Zařízení nebudou splněny technické parametry či podmínky dle požadované technické specifikace podle Přílohy č. 1 nebo 2 nebo dle platných technických norem,
 - 12.1.3 Prodávající neodstraní včas vady uvedené v soupisu zjištěných vad v rámci zápisu o převzetí Zařízení podle odst. 9.6,
 - 12.1.4 vyjdou najevo skutečnosti svědčící o tom, že Prodávající nebude schopen Zařízení dodat,
- 12.2 Prodávající je oprávněn od Smlouvy odstoupit v případě, že Kupující je v prodlení se zaplacením faktury delším než 2 měsíce s výjimkou případů, kdy Kupující nezaplatil fakturu z důvodu vady dodaného Zařízení nebo porušení Smlouvy Prodávajícím.
- 12.3 Účinky odstoupení od Smlouvy nastávají dnem doručení písemného oznámení jedné Smluvní strany o odstoupení od Smlouvy druhé Smluvní straně. Smluvní strana, které bylo před odstoupením od Smlouvy poskytnuto plnění druhou Smluvní stranou, toto plnění vrátí do 30 dnů ode dne odeslání vyrozumění o odstoupení odstupující Smluvní stranou, nestanoví-li odstupující Smluvní strana delší lhůtu.

13. POJIŠTĚNÍ, ODPOVĚDNOST ZA ŠKODU

- 13.1 Prodávající se zavazuje pojistit Zařízení proti veškerým rizikům, a to alespoň ve výši Kupní Ceny a po dobu vymezenou zahájením přepravy až do dodání Kupujícímu. V případě porušení této povinnosti odpovídá Prodávající za vzniklou škodu.
- 13.2 Prodávající odpovídá za škodu, kterou sám způsobí, rovněž odpovídá Kupujícímu za škodu, kterou způsobí třetí osoby, které Prodávající zavázal provést plnění dle této Smlouvy nebo jeho část.

14. ZÁRUKA, MIMOZÁRUČNÍ SERVIS

- 14.1 Prodávající poskytuje Kupujícímu na Zařízení záruku za jakost minimálně po dobu **60 měsíců**, a to v rozsahu dle Přílohy č. 1. Poskytuje-li výrobce Zařízení na kteroukoliv jeho součást záruku delší, pak pro tuto součást platí tato delší záruční doba.
- 14.2 Záruka za jakost počíná běžet dnem následujícím po vyhotovení zápisu o převzetí Zařízení Kupujícím dle odst. 9.3 Smlouvy.
- 14.3 Prodávající se zavazuje zajistit bezplatný servis Zařízení prostřednictvím autorizovaných techniků a bezplatné pravidelné servisní prohlídky Zařízení v místě jeho předání v rozsahu stanoveném výrobcem po celou dobu záruční doby dle této Smlouvy, včetně oprav, dodávky náhradních dílů, dopravy a práce autorizovaného servisního technika.
- 14.4 Zjistí-li Kupující na Zařízení závadu, vyzve Prodávajícího k jejímu odstranění prostřednictvím běžné elektronické zprávy odeslané na adresu: teste@teste.cz.
- 14.5 Prodávající je povinen od odeslání výzvy dle předchozího odstavce
 - 14.5.1 do 3 pracovních dnů navrhnout způsob odstranění závady a, je-li to nutné, zahájit záruční opravu,
 - 14.5.2 do 15 dnů závadu odstranit.
- 14.6 V případě závady nikoli běžné je Prodávající povinen provést opravu v době odpovídající složitosti opravy.
- 14.7 Náklady související se záruční opravou včetně přepravného a cestovného vždy hradí Prodávající.
- 14.8 Opravené Zařízení předá Prodávající Kupujícímu na základě předávacího protokolu o opravě závady (dále jen "**Protokol o opravě závady**") obsahujícího potvrzení obou Smluvních stran, že Zařízení bylo zbaveno závady.
- 14.9 Vykazuje-li Zařízení závady, pro které jej nelze prokazatelně užívat v plném rozsahu více jak 60 dnů (doba závad) během šesti nebo méně po sobě jdoucích měsíců záruční doby, je Prodávající povinen odstranit vadu dodáním nového Zařízení bez vady dle § 2106 odst. (1) písm. a) OZ, a to ve lhůtě 90 dnů ode dne odeslání výzvy k dodání, nedohodnou-li se Smluvní strany jinak.
- 14.10 Prodávající se zavazuje zajistit mimozáruční servis v místě dodání a předání Zařízení včetně oprav, dodávky náhradních dílů a dopravy a práce servisního technika za cenu nepřevyšující cenu obvyklou, a to za podmínek dle odst. 14.4 a 14.5.
- 14.11 Prodávající se zavazuje, že po uplynutí záruční doby v případě požadavku Kupujícího zajistí servis Zařízení včetně oprav, dodávky náhradních dílů a dopravy a práce servisního technika za cenu nepřevyšující cenu obvyklou, a to alespoň do uplynutí 7 let ode dne předání a

převzetí Zařízení.

15. <u>SMLUVNÍ POKUTY</u>

- 15.1 Kupující je oprávněn uplatnit vůči Prodávajícímu smluvní pokutu ve výši 0,1 % z Kupní Ceny za každý započatý den prodlení s plněním povinností dle odst. 4.2 a 14.9 Smlouvy.
- 15.2 Kupující má nárok na úhradu 1.000,- Kč za každý započatý den prodlení se zahájením záruční opravy dle odst. 14.5.
- 15.3 Kupující má nárok na úhradu 1.500,- Kč za každý započatý den, po který nemohl Zařízení pro vadu podléhající záruční opravě používat, počínaje 16. dnem po uplatnění záruční vady. V případě, že byla v souladu s ustanovením odst. 14.5 stanovena na opravu vady nikoli běžné zvláštní lhůta, má Kupující nárok na úhradu 1.500,- Kč za každý den následující po uplynutí této zvláštní lhůty.
- 15.4 V případě uplatnění důvodů pro odstoupení od Smlouvy dle odst. 12.1.2 je Kupující oprávněn uplatnit vůči Prodávajícímu smluvní pokutu ve výši 10 % Kupní Ceny.
- 15.5 Pro případ prodlení s úhradou kterékoli splatné pohledávky (peněžitého dluhu) dle Smlouvy je prodlévající Kupující či Prodávající (dlužník) povinen zaplatit druhé Smluvní straně (věřiteli) úrok z prodlení v zákonné výši za každý započatý den prodlení.
- 15.6 Smluvní pokuta je splatná do 30 dnů ode dne odeslání výzvy k zaplacení.
- 15.7 Zaplacením smluvní pokuty nejsou dotčeny nároky Smluvních stran na náhradu škody, použití ustanovení § 2050 OZ je vyloučeno.
- 15.8 Smluvní pokutu nelze uplatnit, je-li smluvní povinnost porušena v důsledku vyšší moci.

16. SPORY

V případě sporu Smluvních stran v souvislosti s touto Smlouvou je místní příslušnost určena sídlem Kupujícího.

17. MLČENLIVOST

Smluvní strany prohlašují, že zachovají mlčenlivost o skutečnostech, které se dozvědí v souvislosti s touto Smlouvou a při jejím plnění a jejichž zpřístupnění by mohlo druhé Smluvní straně způsobit újmu. Tím nejsou dotčeny zákonné povinnosti Kupujícího.

18. ZÁVĚREČNÁ A JINÁ UJEDNÁNÍ

- 18.1 Prodávající prohlašuje, že přejímá na sebe nebezpečí změny okolností ve smyslu ustanovení § 1765 odst. 2 OZ.
- 18.2 Veškeré změny či doplnění Smlouvy lze učinit pouze na základě písemné dohody Smluvních stran, neumožňuje-li jednostrannou změnu Smlouva či právní předpis.

- 18.3 Smlouva jako celek včetně všech příloh podléhá povinnosti uveřejnění v registru smluv v souladu se zákonem č. 340/2015 Sb., o zvláštních podmínkách účinnosti některých smluv, uveřejňování těchto smluv a registru smluv, v platném znění. Smluvní strany prohlašují, že veškeré informace uvedené ve Smlouvě a jejích přílohách nepovažují za obchodní tajemství ve smyslu § 504 OZ a udělují svolení k jejich zveřejnění. Uveřejnění Smlouvy zajistí Kupující.
- 18.4 Nedílnou součástí Smlouvy jsou tyto přílohy:

Příloha č. 1: Technická specifikace

Příloha č. 2: Nabídka Prodávajícího v rozsahu části, která technicky popisuje Zařízení

Příloha č. 3: Čestné prohlášení o závazku dodržovat zásady sociálně odpovědného

zadávání, environmentálně odpovědného zadávání

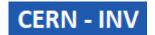
18.5 Smluvní strany prohlašují, že Smlouvu před jejím podepsáním přečetly, jejímu obsahu rozumí a s jejím obsahem souhlasí. Na důkaz svého souhlasu připojují obě Smluvní strany své podpisy.

Za: Fyzikální ústav AV ČR, v. v. i. Za: TESTOVACÍ TECHNIKA s.r.o.

23, 12, 2025 23, 12, 2025

RNDr. Michael Prouza, Ph.D. Ing. Bohumil Kvapil Iméno: lméno:

Funkce: ředitel Funkce: jednatel


Příloha č. 1 – Technická specifikace

Zařízení musí zahrnovat součásti a splňovat technické podmínky uvedené v této tabulce.

č.	Popis a minimální specifikace Zařízení stanovené Kupujícím	Popis a specifikace Zařízení nabízeného Prodávajícím	Splňuje ANO/NE
1	Number of analog channels: 4	4	ANO
2	Bandwidth of all analog channels: 6 GHz	6 GHz	ANO
3	Sample rate for all analog and digital channels - 50 GS/s for 2 simultaneously used channels - 25 GS/s for 4 simultaneously used channels	50 GS/s (2 channels), 25 GS/s (4 channels)	ANO
4	Record length: ≥100 Mpoints/ch	125 GSa/ch	ANO
5	Waveform Capture Rate: ≥ 500,000 waveforms/s	>500,000 waveforms/s	ANO
6	Vertical resolution: ≥ 12-bit ADC	12 bit	ANO
7	Input impedances of 50 Ohm and 1 MOhm can be selected for each analog channel	1 M Ω and 50 Ω	ANO
8	Input sensitivity range wider or equal to 50 Ohm: 1 mV/div to 1 V/div 1 MOhm: 500 uV/div to 10 V/div	50 Ohm: 1 mV/div to 1 V/div 1 MOhm: 500 uV/div to 10 V/div	ANO
9	Maximum input voltage 50 Ohm: \geq 2.0 V _{RMS} at <100 mV/div (peaks ≤ 20 V) 50 Ohm: \geq 5.0 V _{RMS} at \geq 100 mV/div (peaks ≤ 20 V) 1 MOhm: \geq 300 V _{RMS} which peaks ≤ 420 V	50 Ω : 2.3 VRMS at <100 mV/div 50 Ω : 5.5 VRMS at ≥100 mV/div 1 M Ω : 300 VRMS with peaks ≤ ±425 V	ANO
10	Random noise RMS for 6 GHz, 50 GS/s, 50 Ohm input imp. smaller or equal to - 125 uV (1 mV/div) - 130 uV (2 mV/div) - 160 uV (5 mV/div) - 250 uV (10 mV/div) - 450 uV (20 mV/div) - 1 mV (50 mV/div) - 2.5 mV (100 mV/div) - 20 mV (1 V/div)	- 124 uV (1 mV/div) - 127 uV (2 mV/div) - 156 uV (5 mV/div) - 234 uV (10 mV/div) - 412 uV (20 mV/div) - 949 uV (50 mV/div) - 2.39 mV (100 mV/div) - 19 mV (1 V/div)	ANO
11	Random noise RMS for 500 MHz, 25 GS/s, 1 MOhm input imp. smaller or equal to - 200 uV (1 mV/div) - 210 uV (2 mV/div) - 220 uV (5 mV/div) - 250 uV (10 mV/div) - 300 uV (20 mV/div) - 550 uV (50 mV/div) - 1.5 mV (100 mV/div) - 15 mV (1 V/div)	- 186 uV (1 mV/div) - 202 uV (2 mV/div) - 210 uV (5 mV/div) - 236 uV (10 mV/div) - 288 uV (20 mV/div) - 522 uV (50 mV/div) - 1.25 mV (100 mV/div) - 13,4 mV (1 V/div)	ANO
12	Channel isolation (for any two channels set to 200 mV/div) ≥ 50 dB up to 2 GHz ≥ 45 dB up to 5 GHz	≥50 dB up to 2 GHz ≥45 dB up to 5 GHz	ANO
13	Number of digital logic inputs per single analog channel: >= 8	8	ANO
14	Digital channel: maximum input toggle rate >= 500 MHz	500 MHz	ANO

15	Digital channel: minimum detectable pulse width ≤ 300 ps	300 ps	ANO
16	Digital channel threshold: - threshold range >= ± 40 V - threshold resolution ≤ 10 mV	- threshold range >= ± 40 V - threshold resolution ≤ 10 mV	ANO
17	Digital channel: absolute maximum input voltage >= ± 40 V peak	±42 V peak	ANO
18	Time base range wider or equal to (40 ps/div, 1000 s/div)	40 ps/div to 1,000 s/div	ANO
19	Available trigger types: - Edge - Pulse Width - Runt - Timeout - Window - Logic - Rise/Fall Time - Visual Trigger	- Edge - Pulse Width - Runt - Timeout - Window - Logic - Rise/Fall Time - Visual Trigger - Setup and hold	ANO
20	Trigger bandwidth higher or equal to - Edge trigger: 6 Ghz - Pulse width trigger: 4 GHz - Logic trigger: 4 GHz	- Edge trigger: 6 Ghz - Pulse width trigger: 4 GHz - Logic trigger: 4 GHz	ANO
21	Trigger frequency counter with 8 digits	Trigger frequency counter with 8 digits	ANO
22	Search feature for automatic search of user- defined events in long waveform records available		ANO
23	Jitter and eye pattern analysis software available		ANO
24	Oscilloscope Display - screen dimensions >= 14.0 inch - resolution >= 1920 x 1080 pixels - capacitive touchscreen	 screen dimensions >= 15.6 inch resolution >= 1920 x 1080 pixels capacitive touchscreen 	ANO
25	Methods of interaction with oscilloscope:	 touch screen control panel with standard knobs and buttons mouse and keyboard 	ANO
26	Connectivity - USB 3.0 - LAN (10/100/1000 Base-T Ethernet) - Display Port or HDMI	- USB 3.0, USB 2.0 - LAN (10/100/1000 Base-T - Ethernet) - Display port, VGA, DVI-I	ANO
27	Possibility of PC based analysis and remote connection to the oscilloscope over the ethernet network		ANO
28	Passive voltage probe with 1 GHz bandwidth included per each analog channel	4x TPP1000	ANO
29	Weight <= 20 kg	12,88 kg	ANO
30	Total protection plan with length: >= 5 years (includes repair-or-replacement coverage from wear and tear accidental damage ESD or EOS)	Option T5	ANO

dodavatel

TESTOVACÍ TECHNIKA s.r.o.

Československé armády 923/15 290 01 Poděbrady Česká republika (Česko)

IČO: 26129507, DIČ: CZ26129507

vystaveno: **4.12.2025**platnost do: **4.1.2026**

způsob platby: platba na fakturu

splatnost: 30 dní

odběratel

Fyzikální ústav AV ČR, v.v.i.

Na Slovance 1999/2 182 21 Praha - Libeň Česká republika (Česko)

IČO: 68378271, DIČ: CZ68378271

MSO64B

# číslo	položka			j.	cena/j.	sleva	cena bez DPH
1. MSO64B	6 Series Mixed Signal Oscilloscope! (4) FlexChannels length Certificate of Traceable Calibration Standard	with 62.5N	1 record	1 ks	0,00 Kč		0,00 Kč
	doba dodání: 8–10 týdnů						
2. MSO64B 6-BW-60	00 Installed Option 6 GHz Bandwidth doba dodání: 8–10 týdnů			1 ks	2 290 000,00 Kč	23%	1 763 300,00 Kč
3. 6-RL-1	Installed Option Extend record length to 125M/ch maximum			1 ks	120 000,00 Kč	25%	90 000,00 Kč
	doba dodání: 6–8 týdnů						
4. MS064BT5	Five year Total Product Protection Plan includes repair-or-replacement coverage from wear and tear ac Guarantees faster repair time than without coverage.	cidental dam	age ESD or EOS.	1 ks	185 800,00 Kč	20%	148 640,00 Kč
	doba dodání: 8—10 týdnů						
5. 103050300	ADAPTER CONN, BNC PLUG TO SMA JACK STR 12GHz			4 ks	22 700,00 Kč	20%	72 640,00 Kč
	sazl	oa DPH	cena bez D	PH	DPH		cena vč. DPH

sazba DPH	cena bez DPH	DPH	cena vč. DPH
21%	2 074 580,00 Kč	435 661,80 Kč	2 510 241,80 Kč
	2 074 580,00 Kč	435 661,80 Kč	2 510 241,80 Kč

DPH vyčíslené orientačně

cena celkem **2 074 580,00 Kč**

cena bez DPH

Tektronix[®]

6 Series B MSO

Mixed Signal Oscilloscope Datasheet

Key performance specifications

With the lowest input noise and up to 10 GHz analog bandwidth, the 6 Series MSO provides the best signal fidelity for analyzing and debugging today's embedded systems with GHz clock and bus speeds. The remarkably innovative pinch-swipe-zoom touchscreen user interface coupled with the industry's largest high definition display and up to 8 FlexChannel® inputs that let you measure one analog or eight digital signals per channel, the 6 Series MSO is ready for today's toughest challenges and tomorrow's too.

Input channels

- 4, 6, or 8 FlexChannel[®] inputs
- Each FlexChannel provides:
 - One analog signal that can be displayed as a waveform view, a spectral view, or both simultaneously
 - Eight digital logic inputs with TLP058 logic probe

Bandwidth (all analog channels)

1 GHz, 2.5 GHz, 4 GHz, 6 GHz, 8 GHz, 10 GHz (upgradable)

Sample rate (all analog / digital channels)

- Real-time: 50 GS/s (2 channels), 25 GS/s (4 channels), 12.5 GS/s (> 4 channels)
- Interpolated: 2.5 TS/s

Record length (all analog / digital channels)

- · 62.5 Mpoints standard
- 125, 250, 500 Mpoints, or 1 Gpoints (optional)

Waveform capture rate

>500.000 waveforms/s

Vertical resolution

- 12-bit ADC
- Up to 16-bits in High Res mode

Standard trigger types

- Edge, Pulse Width, Runt, Timeout, Window, Logic, Setup & Hold, Rise/Fall Time, Parallel Bus, Sequence, Visual Trigger, Video (optional), RF vs. Time (optional)
- Auxiliary Trigger ≤5 V_{RMS}, 50Ω, 400 MHz (Edge Trigger only)

Standard analysis

- Cursors: Waveform, V Bars, H Bars, V&H Bars
- Measurements: 36
- Spectrum View: Frequency-domain analysis with independent controls for frequency and time domains
- FastFrame™: Segmented memory acquisition mode with maximum trigger rate >5,000,000 waveforms per second
- · Plots: Time Trend, Histogram, Spectrum and Phase Noise
- Math: Basic waveform arithmetic, FFT, and advanced equation editor
- · Search: Search on any trigger criteria
- · Jitter: TIE and Phase Noise

Optional analysis

- Advanced Jitter and Eye Diagram Analysis
- User-defined filtering
- Advanced Spectrum View
- RF vs. Time traces, triggers, Spectrograms, and IQ capture
- · Digital Power Management
- Mask/Limit Testing
- · Inverters, Motors, and Drives
- LVDS Debug and Analysis
- PAM3 Analysis
- Advanced Power Measurements and Analysis
- Advanced Vector Signal Analysis (SignalVu-PC)

Optional protocol trigger, decode, and analysis

I²C, SPI, eSPI, I3C, RS-232/422/485/UART, SPMI, SMBus, CAN, CAN FD, CAN XL, LIN, FlexRay, SENT, PSI5, CXPI, Automotive Ethernet, MIPI C-PHY, MIPI D-PHY, USB 2.0, eUSB2.0, USB3.0, PCIe Gen1/Gen2, Ethernet, EtherCAT, Audio, MIL-STD-1553, ARINC 429, Spacewire, 8B/10B, NRZ, Manchester, SVID, 1-Wire, MDIO, and NFC

Optional serial compliance test

Ethernet, USB 2.0, Automotive Ethernet, Multi-gigabit Automotive Ethernet, Industrial Ethernet, MIPI D-PHY 1.2, MIPI D-PHY 2.1, MIPI C-PHY 2.0

Optional memory analysis

DDR3 debug, analysis, and compliance test

Arbitrary/Function Generator (optional and upgradable)

- 50 MHz waveform generation
- Waveform Types: Arbitrary, Sine, Square, Pulse, Ramp, Triangle, DC Level, Gaussian, Lorentz, Exponential Rise/Fall, Sin(x)/x, Random Noise, Haversine, Cardiac

Digital voltmeter (free with product registration)

4-digit AC RMS, DC, and DC+AC RMS voltage measurements

Trigger frequency counter (free with product registration)

8-digit

Display

- 15.6 inch (396 mm) TFT color
- High Definition (1,920 x 1,080) resolution
- Capacitive (multi-touch) touchscreen

Connectivity

USB Host (7 ports), USB 3.0 Device (1 port), LAN (10/100/1000 Base-T Ethernet), DisplayPort, DVI-I, VGA

e*Scope°

Remotely view and control the oscilloscope over a network connection through a standard web browser

Warranty

1 year standard

Dimensions

- 12.2 in (309 mm) H x 17.9 in (454 mm) W x 8.0 in (204 mm) D
- Weight: < 28.4 lbs. (12.88 kg)

Never let a lack of channels slow down your verification and debug process again

The 6 Series MSO offers better visibility into complex systems by offering four, six and eight-channel models with a large 15.6-inch high-definition (1,920 x 1,080) display. Many applications, such as embedded systems, three-phase power electronics, automotive electronics, power supply design, and Power Integrity require the observation of more than four analog signals to verify and characterize device performance and to debug challenging system issues.

Most engineers can recall situations in which they were debugging a particularly difficult problem and wanted greater system visibility and context, but the oscilloscope they were using was limited to two or four analog channels. Using

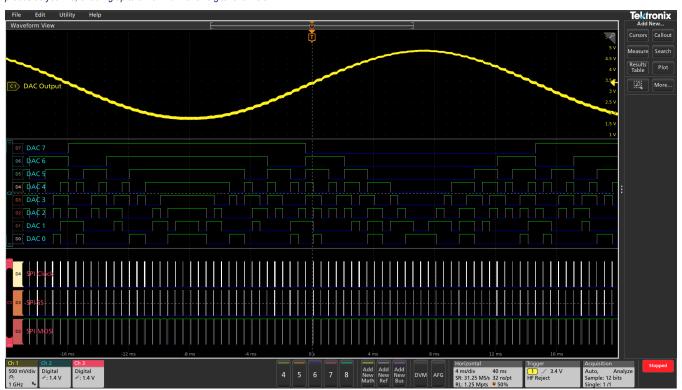
a second oscilloscope involves significant effort to align the trigger points. difficulty in determining the timing relationships across the two displays, and documentation challenges.

You might assume that a six and eight-channel oscilloscope would cost 50% or 100% more than a four-channel oscilloscope, you'll be pleasantly surprised to find that six-channel models are only ~25% more than four channel models and eight-channel models are only ~67% (or less) more than four channel models. The additional analog channels can pay for themselves quickly by enabling you to keep current and future projects on schedule.

FlexChannel® technology enables maximum flexibility and broader system visibility

The 6 Series MSO redefines what a Mixed Signal Oscilloscope (MSO) should be. FlexChannel technology enables each channel input to be used as a single analog channel, eight digital logic inputs (with the TLP058 logic probe), or simultaneous analog and spectrum views with independent acquisition controls for each domain. Imagine the flexibility and configurability this provides.

You can change the configuration at any time by simply adding or removing TLP058 logic probes, so you always have the right number of digital channels.

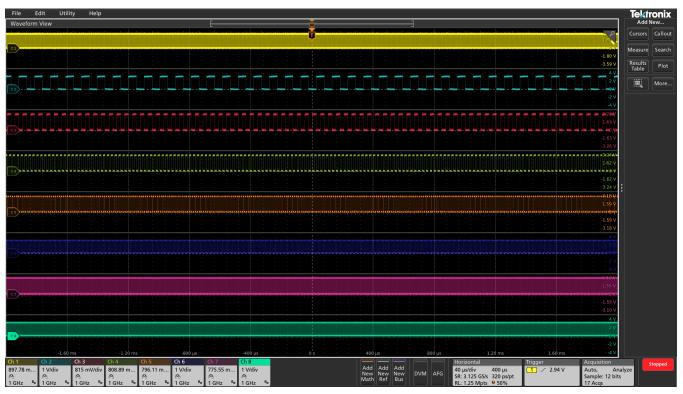


FlexChannel technology enables the ultimate in flexibility. Each input can be configured as a single analog or eight digital channels based on the type of probe you attach.

Previous-generation MSOs required tradeoffs, with digital channels having lower sample rates or shorter record lengths than analog channels. The 6 Series MSO offers a new level of integration of digital channels. Digital channels share the same high sample rate (up to 50 GS/s), and long record length (up to 1 Gpoints) as analog channels.

The TLP058 provides eight high performance digital inputs. Connect as many TLP058 probes as you like, enabling up to a maximum of 64 digital channels.

Channel 2 has a TLP058 Logic Probe connected to the eight inputs of a DAC. Notice the green and blue color coding, where ones are green and zeros are blue. Another TLP058 Logic Probe on Channel 3 is probing the SPI bus driving the DAC. The white edges indicate higher frequency information is available by either zooming in or moving to a faster sweep speed on the next acquisition.

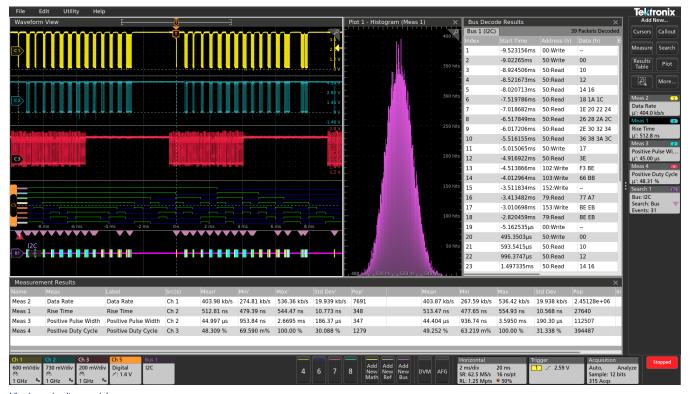


Beyond just analog and digital, FlexChannel inputs include Spectrum View. This Tektronix-patented technology enables you to simultaneously view both analog and spectral views of all your analog signals, with independent controls in each domain. For the first time ever, oscilloscope-based frequency-domain analysis is as easy as using a spectrum analyzer while retaining the ability to correlate frequency-domain activity with other time-domain phenomena.

Unprecedented signal viewing capability

The stunning 15.6 inch (396 mm) display is the largest display in the industry. It is also the highest resolution display, with full HD resolution (1,920 x 1,080), enabling you to see many signals at once with ample room for critical readouts and analysis.

The viewing area is optimized to ensure that the maximum vertical space is available for waveforms. The Results Bar on the right can be hidden, enabling the waveform view to use the full width of the display.


Stacked display mode enables easy visibility of all waveforms while maintaining maximum ADC resolution on each input for the most accurate measurements.

The 6 Series MSO offers a revolutionary new Stacked display mode. Historically, scopes have overlaid all waveforms in the same graticule, forcing difficult tradeoffs:

- To make each waveform visible, you vertically scale and position each waveform so that they don't overlap. Each waveform uses a small percentage of the available ADC range, leading to less accurate measurements.
- For measurement accuracy, you vertically scale and position each waveform to cover the entire display. The waveforms overlap each other, making it hard to distinguish signal details on individual waveforms

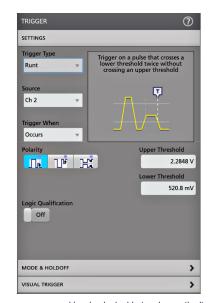
The new Stacked display eliminates this tradeoff. It automatically adds and removes additional horizontal waveform 'slices' (additional graticules) as waveforms are created and removed. Each slice represents the full ADC range for the waveform. All waveforms are visually separated from each other while still using the full ADC range, enabling maximum visibility and accuracy. And it's all done automatically as waveforms are added or removed! Channels can easily be reordered in stacked display mode by dragging and dropping the channel and waveform badges in the Settings bar at the bottom of the display. Groups of channels can also be overlaid within a slice to simplify visual comparison of signals.

The massive display also provides plenty of viewing area not only for signals. but also for plots, measurement results tables, bus decode tables and more. You can easily resize and relocate the various views to suit your application.

Viewing - simultaneously!

Exceptionally easy-to-use user interface lets you focus on the task at hand

The Settings Bar - key parameters and waveform management


Waveform and scope operating parameters are displayed in a series of "badges" in the Settings Bar that runs along the bottom of the display. The Settings Bar provides Immediate access for the most common waveform management tasks. With a single tap, you can:

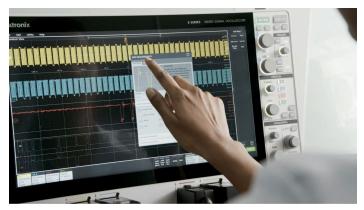
- Turn on channels
- Add math waveforms
- Add reference waveforms
- Add bus waveforms
- Enable the optional integrated Arbitrary/Function generator (AFG)
- Enable the optional integrated digital voltmeter (DVM)

The Results Bar - analysis and measurements

The Results Bar on the right side of the display includes immediate, one-tap access to the most common analytical tools such as cursors, measurements, searches, measurement and bus decode results tables, plots, and callouts.

DVM, measurement and search results badges are displayed in the Results Bar without sacrificing any waveform viewing area. For additional waveform viewing area, the Results Bar can be dismissed and brought back at any time.

Configuration menus are accessed by simply double-tapping on the item of interest on the display. In this case, the Trigger badge was double-tapped to open the Trigger configuration menu.


Touch interaction finally done right

Oscilloscopes have included touch screens for years, but the touch interface has been an afterthought. The 6 Series MSO 15.6" display includes a capacitive touchscreen and provides the industry's first oscilloscope user interface truly designed for touch.

The touch interactions that you use with phones and tablets, and expect in a touch enabled device, are supported.

- Drag waveforms left/right or up/down to adjust horizontal and vertical position or to pan a zoomed view
- Pinch and expand to change scale or zoom in/out in either horizontal or vertical directions
- Flick items off the edge of the screen to delete them
- Swipe in from the right to reveal the Results Bar or down from the top to access the menus in the upper left corner of the display

Smooth, responsive front panel controls allow you to make adjustments with familiar knobs and buttons, and you can add a mouse or keyboard as a third interaction method.

Interact with the capacitive touch display in the same way you do on your phones and tablets.

Variable font size

Historically, oscilloscope user interfaces have been designed with fixed font sizes to optimize viewing of waveforms and readouts. This implementation is fine if all users have the same viewing preferences, but they don't. Users spend a significant amount of time staring at screens, and Tektronix recognizes this. The 6 Series MSO offers a user preference for variable font sizes; scaling down to 12 points or up to 20 points. As you adjust the font size, the user interface dynamically scales so you can easily choose the best size for your application.

Comparison showing how the user interface scales as font size changes.

Efficient and intuitive front panel provides critical controls while still leaving room for the massive 15.6" high definition display.

Attention to detail in the front-panel controls

Traditionally, the front face of a scope has been roughly 50% display and 50% controls. The 6 Series MSO display fills about 85% of the face of the instrument. To achieve this, it has a streamlined front panel that retains critical controls for simple intuitive operation, but with a reduced number of menu buttons for functions directly accessed via objects on the display.

Color-coded LED light rings indicate trigger source and vertical scale/position knob assignments. Large, dedicated Run/Stop and Single Sequence buttons are placed prominently in the upper right, and other functions like Force Trigger, Trigger Slope, Trigger Mode, Default Setup, Autoset and Quick-save functions are all available using dedicated front panel buttons.

Windows or not - you choose

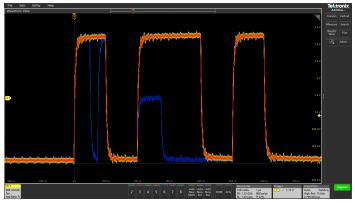
The 6 Series MSO offers you the choice of whether to include a Microsoft Windows™ operating system.

The 6 Series MSO comes with a standard removable SSD that contains a closed embedded operating system that will boot as a dedicated scope with no ability to run or install other programs. An optional SSD with Windows 10 operating system is available that will boot to an open Windows 10 configuration, so you can minimize the oscilloscope application and access a Windows desktop where you can install and run additional applications on the oscilloscope or you can connect additional monitors and extend your desktop. Simply swap the drives as needed through an access panel on the bottom of the instrument.

Whether you run Windows or not, the oscilloscope operates in exactly the same way with the same look and feel and UI interaction.

Need higher channel density?

The 6 Series is also available as a low-profile digitizer - the LPD64. With four SMA input channels plus an auxiliary trigger input, in a 2U high package and 12-bit ADC's, the 6 Series Low Profile Digitizer sets a new standard for performance in applications where extreme channel density is required.



Experience the performance difference

With up to 10 GHz analog bandwidth, 50 GS/s sample rates, standard 62.5 Mpts record length and a 12-bit analog to digital converter (ADC), the 6 Series MSO has the performance you need to capture waveforms with the best possible signal fidelity and resolution for seeing small waveform details.

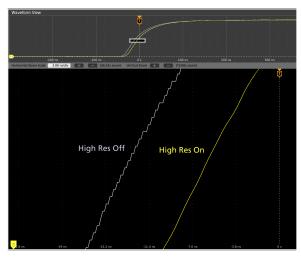
Digital Phosphor technology with FastAcq™ high-speed waveform capture

To debug a design problem, first you must know it exists. Digital phosphor technology with FastAcq provides you with fast insight into the real operation of your device. Its fast waveform capture rate - greater than 500,000 waveforms per second - gives you a high probability of seeing the infrequent problems common in digital systems: runt pulses, glitches, timing issues, and more. To further enhance the visibility of rarely occurring events, intensity grading indicates how often rare transients are occurring relative to normal signal characteristics.

FastAcg's high waveform capture rate enables you to discover infrequent problems common in digital design.

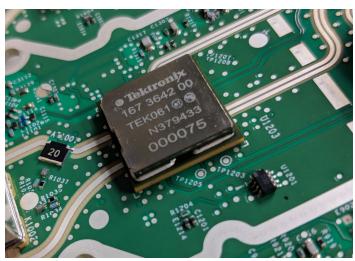
Industry leading vertical resolution and low noise

The 6 Series MSO provides the performance to capture the signals of interest while minimizing the effects of unwanted noise when you need to capture high-amplitude signals while seeing smaller signal details. At the heart of the instrument are 12-bit analog-to-digital converters (ADCs) that provide 16 times the vertical resolution of traditional 8-bit ADCs.


A new High Res mode applies a hardware-based unique Finite Impulse Response (FIR) filter based on the selected sample rate. The FIR filter maintains the maximum bandwidth possible for that sample rate while preventing aliasing and removing noise from the oscilloscope amplifiers and ADC above the usable bandwidth for the selected sample rate.

High Res mode always provides at least 12 bits of vertical resolution and extends all the way to 16 bits of vertical resolution at ≤ 625 MS/s sample rates and 200 MHz of bandwidth. The following table shows the number of bits of vertical resolution for each sample rate setting when in High Res.

Sample rate	Number of bits of vertical resolution			
50 GS/s	8			
25 GS/s	8			
12.5 GS/s	12			
Table continued	1			


Sample rate	Number of bits of vertical resolution		
6.25 GS/s	13		
3.125 GS/s	14		
1.25 GS/s	15		
≤625 MS/s	16		

New lower-noise front end amplifiers further improve your ability to resolve fine signal detail.

12-bit ADC, along with the new High Res mode, enable industry leading vertical resolution

A new TEK061 front end amplifier sets a new standard for low-noise acquisition providing the best signal fidelity to capture small signals with high resolution.

A key attribute to being able to view fine signal details on small, high-speed signals is noise. The higher a measurement systems' intrinsic noise, the less true signal detail will be visible. This becomes more critical on an oscilloscope when the vertical settings are set to high sensitivity (like ≤ 10 mV/div) in order to view small signals that are prevalent in high-speed bus topologies. The 6 Series MSO has a new front-end ASIC, the TEK061, that enables breakthrough noise performance at the highest sensitivity settings. The 'B' version of the 6 Series MSO has a new 50 GS/s low noise interleave sample rate on up to

two channels that reduces noise by almost 3 dB at higher volts/div settings, furthering the advantage over competitive scopes in low noise performance. The table below shows a comparison of typical noise performance of the 6 Series MSO and prior generations of Tektronix oscilloscopes in this bandwidth range.

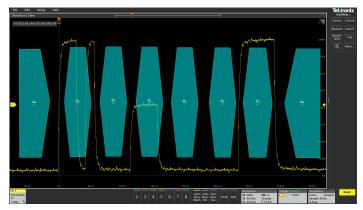
50 Ω, RMS voltage, typical

Bandwidth	V/Div	6 Series B MSO	DPO7000C	MSO/ DPO70000C
1 GHz	1 mV	51.8 µV	90 μV ¹	N/A
	10 mV	82.9 µV	279 μV	N/A
	100 mV	829 µV	2.7 mV	N/A
4 GHz	1 mV	97.4 μV	N/A	N/A
	10 mV	171 µV	N/A	500 μV
	100 mV	1.73 mV	N/A	4.3 mV
8 GHz	1 mV	153 µV	N/A	N/A
	10 mV	287 μV	N/A	580 μV
	100 mV	2.94 mV	N/A	4.5 mV

Triggering

Discovering a device fault is only the first step. Next, you must capture the event of interest to identify root cause. The 6 Series MSO provides a complete set of advanced triggers, including:

- Runt
- Logic
- · Pulse width
- Window
- Timeout
- Rise/Fall time
- · Setup and Hold violation
- Serial packet
- · Parallel data
- Sequence
- Video
- Visual Trigger
- · RF Frequency vs. Time
- · RF Magnitude vs. Time

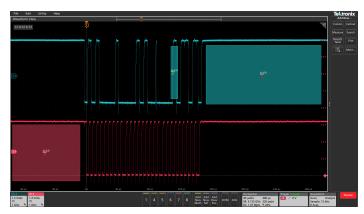

With up to a 1 Gpoint record length, you can capture many events of interest, even thousands of serial packets in a single acquisition, providing high-resolution to zoom in on fine signal details and record reliable measurements.

The wide variety of trigger types and context-sensitive help in the trigger menu make it easier than ever to isolate the event of interest.

Visual trigger - Finding the signal of interest quickly

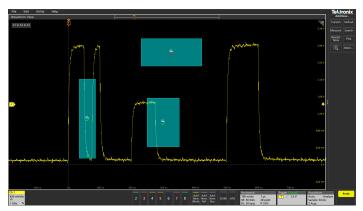
Finding the right cycle of a complex bus can require hours of collecting and sorting through thousands of acquisitions for an event of interest. Defining a trigger that isolates the desired event speeds up debug and analysis efforts.

Visual Trigger extends the 6 Series MSO's triggering capabilities by scanning through all waveform acquisitions and comparing them to on-screen areas (geometric shapes). An unlimited number of areas can be created using a mouse or touchscreen, and a variety of shapes (triangles, rectangles, hexagons, or trapezoids) can be used to specify the desired trigger behavior. Once shapes are created, they can be edited interactively to create custom shapes and ideal trigger conditions.


Visual Trigger areas isolate an event of interest, saving time by only capturing the events you want to see.

By triggering only on the most important signal events, Visual Trigger can save hours of capturing and manually searching through acquisitions. In seconds or minutes, you can find the critical events and complete your debug and analysis efforts. Visual Trigger even works across multiple channels, extending its usefulness to complex system troubleshooting and debug tasks.

10


[?] SETTINGS Trigger Type Trigger on a pulse that crosses a lower threshold twice without crossing an upper threshold Runt Edge 団 Pulse Width Timeout Window Logic H. 400 mV Setup & Hold wer Threshold Rise / Fall Time 0 V Seauence

¹ Bandwidth limited to 200 MHz.

Multiple channel triggering. Visual Trigger areas can be associated with events spanning multiple channels such as packets transmitted on two bus signals simultaneously.

Once multiple areas are defined, a Boolean logic equation can be used to set complex trigger conditions using on-screen editing features.

Boolean logic trigger qualification. Boolean logic using logical OR allows triggering on a specific anomaly in the signal.

TekVPI Probe Interface

The TekVPI® probe interface sets the standard for ease of use in probing. In addition to the secure, reliable connection that the interface provides, many TekVPI probes feature status indicators and controls, as well as a probe menu button right on the comp box itself. This button brings up a probe menu on the oscilloscope display with all relevant settings and controls for the probe. The TekVPI interface enables direct attachment of current probes without requiring a separate power supply. TekVPI probes can be controlled remotely through USB or LAN, enabling more versatile solutions in ATE environments. The 6 Series MSO provides up to 80 W of power to the front panel connectors, sufficient to power all connected TekVPI probes without the need for an additional probe power supply.

Convenient high-speed passive voltage probing

The TPP Series passive voltage probes offer all the benefits of generalpurpose probes - high dynamic range, flexible connection options, and robust mechanical design - while providing the performance of active probes. Up to 1 GHz analog bandwidth enables you to see high frequency components in your signals, and extremely low 3.9 pF capacitive loading minimizes adverse effects on your circuits and is more forgiving of longer ground leads.

An optional, low-attenuation (2X) version of the TPP probe is available for measuring low voltages. Unlike other low-attenuation passive probes, the TPP0502 has high bandwidth (500 MHz) as well as low capacitive loading (12.7 pF).

The instrument comes with standard one TPP1000 (1 GHz, 2.5 GHz models) probe per channel.

TDP7700 Series TriMode Probes

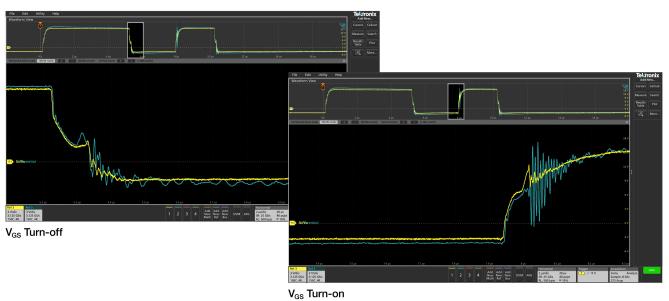
The TDP7700 Series TriMode probes provide the highest probe fidelity available for real-time oscilloscopes. The TDP7700 is designed for use with the 6 Series MSO, with full AC calibration of the probe and tip's signal path based on unique S-parameter models. The probe communicates the S-parameters to the scope via the TekVPI probe interface and the 6 Series MSO includes them to achieve the very best signal fidelity possible from probe tip to acquisition memory. Connectivity innovations such as solder-down tips with the probe's input buffer mounted only a few millimeters from the end of the tip, the TDP7700 Series probes provide unmatched usability for connecting to today's most challenging electronic designs.

With TriMode probing one probe setup makes differential, single ended, and common mode measurements accurately. This unique capability allows you to work more effectively and efficiently, switching between differential, single ended and common mode measurements without moving the probe's connection point.

IsoVu™ Isolated Measurement System

Whether designing an inverter, optimizing a power supply, testing communication links, measuring across a current shunt resistor, debugging EMI or ESD issues, or trying to eliminate ground loops in your test setup. common mode interference has caused engineers to design, debug, evaluate, and optimize "blind" until now.

The revolutionary Tektronix IsoVu technology uses optical communications and power-over-fiber for complete galvanic isolation. When combined with the 6 Series MSO equipped with the TekVPI interface, it is the first, and only, measurement system capable of accurately resolving high bandwidth, differential signals, in the presence of large common mode voltage with:


- Complete galvanic isolation
- Up to 1 GHz bandwidth
- 1 Million to 1 (120 dB) common mode rejection at 100 MHz
- 10,000 to 1 (80 dB) of common mode rejection at full bandwidth
- Up to 2,500 V differential dynamic range
- 60 kV common mode voltage range

The Tektronix TIVP Series IsoVu™ Measurement System offers a galvanically isolated measurement solution to accurately resolve high bandwidth, differential signals up to 2.500 Vpk in the presence of large common mode voltages, with the best-in-class common mode rejection performance across its bandwidth.

High-side gate voltage measurement with IsoVu

The following image shows a comparison of the high-side gate voltage for a standard differential probe versus an optically isolated probe. For both at turn-off and turn-on, high-frequency ringing can be seen on the gate after the device's gate passes through the threshold region. Due to coupling between the gate and power loop, some ringing is expected. However, in the case of the differential probe, the ringing has a significantly higher amplitude than is measured by the optically isolated probe. This is likely due to the changing reference voltage inducing common mode currents within the probe and an artifact of a standard differential probe. While the waveform measured by the differential probe appears to pass the maximum gate voltage of the device, the more accurate measurement of the optically isolated probe makes it clear that the device is within specification. Application designers using standard differential probes for gate voltage measurements should use caution as it may not be possible to differentiate between the probing and measurement system artifact shown here and an actual violation of the device ratings. This measurement artifact may cause the designer to increase the gate resistance to slow down the switching transient and reduce the ringing. However, this would unnecessarily increase losses in the SiC device. For this reason, it is essential to have a measurement system that accurately reflects the actual dynamics of the device, in order to appropriately design the system and optimize performance.

Differential Probe (blue trace) vs. IsoVu Optically Isolated Probe (yellow trace)

Comprehensive analysis for fast insight Basic waveform analysis

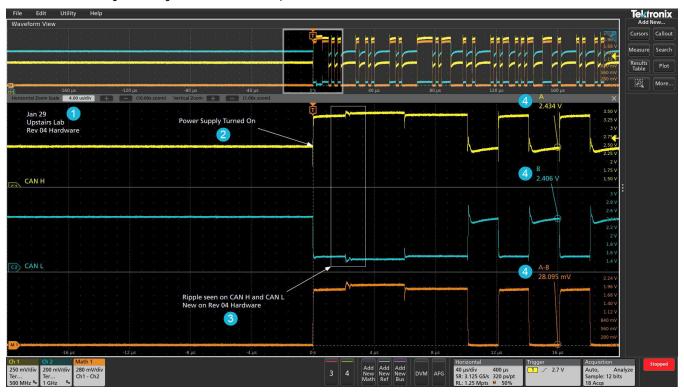
Verifying that your prototype's performance matches simulations and meets the project's design goals requires careful analysis, ranging from simple checks of rise times and pulse widths to sophisticated power loss analysis, characterization of system clocks, and investigation of noise sources.

The 6 Series MSO offers a comprehensive set of standard analysis tools including:

- · Waveform- and screen-based cursors
- 36 automated measurements. Measurement results include all instances in the record, the ability to navigate from one occurrence to the next, and immediate viewing of the minimum or maximum result found in the record
- · Basic waveform math

- · Basic FFT analysis
- Advanced waveform math including arbitrary equation editing with filters and variables
- Spectrum View frequency domain analysis with independent controls for time and frequency domains
- FastFrame™ Segmented Memory enables you to make efficient use of the oscilloscope's acquisition memory by capturing many trigger events in a single record while eliminating the large time gaps between events of interest. View and measure the segments individually or as an overlay.

Standard amplitude and time measurements annotate the waveform display with visual bars and markers to indicate relative information. Measurement results tables provide comprehensive statistical views of measurement results with statistics across both the current acquisition and all acquisitions.



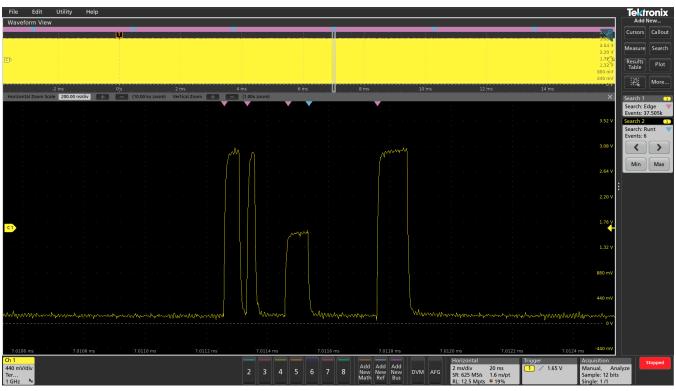
Using measurements to characterize burst width and Frequency.

Callouts

- 1. Note: Write and position a text box on the screen.
- 2. Arrow: Write and position a text box, then add an arrow to a specific location on the screen.
- **3. Rectangle**: Write text and outline a specific region on the screen indicated by a resizable box.
- 4. Bookmark: Create a dynamic readout at a specific time relevant to a trigger point. This readout includes text, magnitude of the signal, signal units, as well as a line and target indicating the bookmark reference point.

Documenting test results and methods is critical when sharing data across a team, recreating a measurement at a later date, or delivering a customer report. With a few taps on the screen, you can create as many custom callouts as needed; enabling you to document the specific details of your test results. With each callout, you can customize the text, location, color, font size, and font.

Easy to use callouts (Note, Arrow, Rectangle, Bookmark) that are detailing the specifics of this test setup and corresponding results.


Navigation and search

Finding your event of interest in a long waveform record can be time consuming without the right search tools. With today's record lengths of many millions of data points, locating your event can mean scrolling through literally thousands of screens of signal activity.

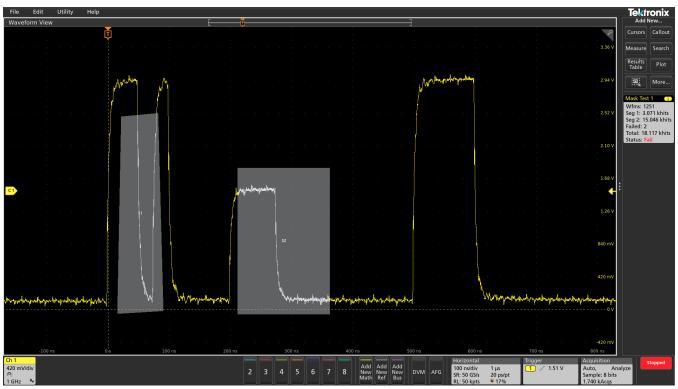
The 6 Series MSO offers the industry's most comprehensive search and waveform navigation with its innovative Wave Inspector® controls. These controls speed panning and zooming through your record. With a unique force-feedback system, you can move from one end of your record to the other in just seconds. Or, use intuitive drag and pinch/expand gestures on the display itself to investigate areas of interest in a long record.

The Search feature allows you to automatically search through your long acquisition looking for user-defined events. All occurrences of the event are highlighted with search marks and are easily navigated to, using the Previous (\leftarrow) and Next (\rightarrow) buttons found on the front panel or on the Search badge on the display. Search types include edge, pulse width, timeout, runt, window, logic, setup and hold, rise/fall time and parallel/serial bus packet content. You can define as many unique searches as you like.

You can also quickly jump to the minimum and maximum value of search results by using the Min and Max buttons on the Search badge.

Earlier, FastAcq revealed the presence of a runt pulse in a digital data stream prompting further investigation.

Mask and limit testing (optional)


Whether you are focused on signal integrity or setting up pass/fail conditions for production, mask testing is an efficient tool to characterize the behavior of certain signals in a system. Quickly create custom masks by drawing mask segments on the screen. Tailor a test to your specific requirements and set actions to take when a mask hit is registered, or when a complete test passes or fails.

Limit testing is an insightful way to monitor the long-term behavior of signals, helping you characterize a new design or confirm hardware performance during production line testing. Limit tests compare your live signal to an ideal, or

golden version of the same signal with user-defined vertical and horizontal tolerances.

You can easily tailor a mask or limit test to your specific requirements by:

- Defining test duration in number of waveforms
- Setting a violation threshold that must be met before considering a test a
- Counting violations/failures and reporting statistical information
- Setting actions upon violations, test failure, and test complete

Custom, multiple segment mask capturing the presence of a signal glitch and runt pulse in a waveform.

User-defined filtering (optional)

In the broad sense, any system that processes a signal can be thought of as a filter. For example, an oscilloscope channel operates as a low pass filter where its 3 dB down point is referred to as its bandwidth. Given a waveform of any shape, a filter can be designed that can transform it into a defined shape within the context of some basic rules, assumptions, and limitations.

Digital filters have some significant advantages over analog filters. For example, the tolerance values of analog filter circuit components are high enough that high order filters are difficult or even impossible to implement. High order filters are easily implemented as digital filters. Digital filters can be implemented as Infinite Impulse Response (IIR) or Finite Impulse Response (FIR). The choice of IIR or FIR filters are based upon design requirements and application.

The 6 Series MSO has the ability to apply designated filters to math waveforms through a MATH arbitrary function. Option 6-UDFLT takes this functionality a level deeper, providing more than MATH arbitrary basic functions and adds

flexibility to support standard filters and can be used for application centric filter designs.

Filters can be created through the Math dialog. Once a filter is edited, it can be easily applied, saved, and recalled for use or modification later.

Filter types supported on the 6 Series MSO include:

- Low pass
- High pass
- Band pass
- Band stop
- All pass
- Hilbert
- Differentiator

Filter response types supported on the 6 Series MSO include:

- Butterworth
- Chebyshev I
- Chebyshev II
- Elliptical
- Gaussian
- Bessel-Thomson

The Filter Response control is available for all Filter Types except All-pass, Hilbert, or Differentiator.

Filter creation dialog showing selection for Filter Type, Filter Response, Cutoff Frequency, Filter Order, and a graphical representation of Magnitude/Phase, Impulse Response, and

Filter designs can be saved, recalled, and applied once any editing has been completed.

Protocol decode and analysis (optional)

During debugging, it can be invaluable to trace the flow of activity through a system by observing the traffic on one or more serial buses. It could take many minutes to manually decode a single serial packet, much less the thousands of packets that may be present in a long acquisition.

And if you know the event of interest that you are attempting to capture occurs when a particular command is sent across a serial bus, wouldn't it be nice if you could trigger on that event? Unfortunately, it's not as easy as simply specifying an edge or a pulse width trigger.

Triggering on a USB full-speed serial bus. A bus waveform provides time-correlated decoded packet content including Start, Sync, PID, Address, End Point, CRC, Data values, and Stop, while the bus decode table presents all packet content from the entire acquisition.

The 6 Series MSO offers a robust set of tools for working with the most common serial buses found in embedded design including I²C, SPI, eSPI, I3C, RS-232/422/485/UART, SPMI, SMBus, CAN, CAN FD, CAN XL, LIN, FlexRay, SENT, PSI5, CXPI, Automotive Ethernet, MIPI C-PHY, MIPI D-PHY, USB 1.0 (1.5 Mbps), USB 1.1 (12 Mbps), USB 2.0 (480 Mbps), eUSB2.0, USB3.0 (5 Gbps), Ethernet 10/100, EtherCAT, Audio (I2S/LJ/RJ/TDM), MIL-STD-1553, ARINC 429, Spacewire, 8B/10B, NRZ, Manchester, SVID, SDLC, 1-Wire, MDIO, and NFC.

Protocol search enables you to search through a long acquisition of serial packets and find the ones that contain the specific packet content you specify. Each occurrence is highlighted by a search mark. Rapid navigation between marks is as simple as pressing the Previous (\leftarrow) and Next (\rightarrow) buttons on the front panel or in the Search badge that appears in the Results Bar.

The tools described for serial buses also work on parallel buses. Support for parallel buses is standard in the instrument. Parallel buses can be up to 64 bits wide and can include a combination of analog and digital channels.

- Serial protocol triggering lets you trigger on specific packet content including start of packet, specific addresses, specific data content, unique identifiers, and errors.
- Bus waveforms provide a higher-level, combined view of the individual signals (clock, data, chip enable, and so on) that make up your bus, making

it easy to identify where packets begin and end, and identifying sub-packet components such as address, data, identifier, CRC, and so on.

- The bus waveform is time aligned with all other displayed signals, making it easy to measure timing relationships across various parts of the system under test.
- Bus decode tables provide a tabular view of all decoded packets in an
 acquisition much like you would see in a software listing. Packets are
 time stamped and listed consecutively with columns for each component
 (Address, Data, and so on).

NFC decode and analysis (optional)

Evaluating the performance margins of NFC designs is often difficult due to an inability to trace the protocol-level result down to the parametric signal level. This means marginal passes may result in failures later in the test flow, especially when designs are susceptible to interference and signal integrity issues caused by design trade-offs or nearby electronics, requiring time consuming debug across multiple instruments like a protocol analyzer and RF signal analyzer.

The NFC Protocol Decode and Search option on the 6 Series MSO offers users the ability to view the transaction of the NFC link and trace the result through every step of signal manipulation in the standard, from the protocol-level down to the fundamental signal level to gain insight into exactly how your NFC chip, tag, reader, or mobile device is performing.

NFC transactions can be long. The software option uniquely uses the data coming from the hardware DDC used for Spectrum View, which allows for sample rate compression, saving transfer time and memory, allowing for 100s of milliseconds or even seconds of signal data to be captured and analyzed.

Additionally, because I/O signals are not always available to probe and trigger on from the device under test, triggering on the RF envelope itself is also a challenge considering NFC's small modulation index. With Spectrum View, you can trigger on the 13.56 MHz envelope using RF vs. Time traces and triggers, which is also unique amongst instruments.

This capability simplifies up-front design validation and also provides a powerful debugging tool in a single instrument when failures do occur.

NFC software option allows you to decode and search through their digital NFC bit stream for performing NFC analog/RF and digital pre-conformance, debug, and troubleshooting in a single instrument.

Spectrum View

It is often easier to debug an issue by viewing one or more signals in the frequency domain. Oscilloscopes have included math-based FFTs for decades in an attempt to address this need. However, FFTs are notoriously difficult to use for two primary reasons.

First, when performing frequency-domain analysis, you think about controls like Center Frequency, Span, and Resolution Bandwidth (RBW), as you would typically find on a spectrum analyzer. But then you use an FFT, where you are stuck with traditional scope controls like sample rate, record length and time/div and have to perform all the mental translations to try to get the view you're looking for in the frequency-domain.


Second, FFTs are driven by the same acquisition system that's delivering the analog time-domain view. When you optimize acquisition settings for the analog view, your frequency-domain view isn't what you want. When you get the frequency-domain view you want, your analog view is not what you want. With math-based FFTs, it is virtually impossible to get optimized views in both domains.

Spectrum View changes all of this. Tektronix' patented technology provides both a decimator for the time-domain and a digital downconverter (DDC) for the frequency-domain behind each FlexChannel. The two different acquisition


paths let you simultaneously observe both time- and frequency-domain views of the input signal with independent acquisition settings for each domain. Other manufacturers offer various 'spectral analysis' packages that claim ease-of-use, but they all exhibit the limitations described above. Only Spectrum View provides both exceptional ease-of-use and the ability to achieve optimal views in both domains simultaneously.

Traditionally, performing RF measurements, such as RF Channel Power (CHP), Adjacent Channel Power Ratio (ACPR), and Occupied Bandwidth (OBW), required a dedicated spectrum or signal analyzer or spectrum analyzer software. This additional hardware or software leads to more complexity and higher costs. Available standard with Spectrum View, integrated RF Measurements on each channel saves users time, bench space, and costs with the ability to validate RF transmitter CHP, ACPR, and OBW directly on the oscilloscope.

Additionally, the DDC significantly reduces the required sample rate to resolve a signal compared to a conventional FFT since it becomes a function of span rather than center frequency. This allows for reduced file sizes, improved frequency resolution, and faster spectrum update rates, leading to a more responsive and accurate solution capable of capturing 10's of seconds of spectrum data.

Intuitive spectrum analyzer controls like center frequency, span and resolution bandwidth (RBW), independent from time domain controls, provide easy setup for frequency domain analysis. A spectrum view is available for each FlexChannel analog input, enabling multi-channel mixed domain analysis.

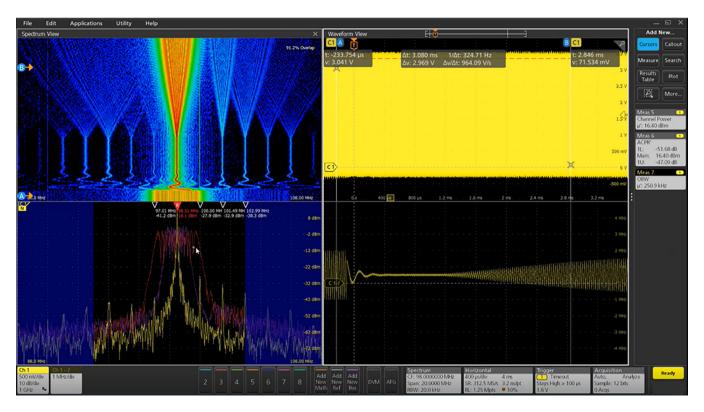
Spectrum Time gates the range of time where the FFT is being calculated. Represented by a small graphical rectangle in the time domain view, it can be positioned to provide time correlation with the time domain waveform. Perfect for conducting Mixed Domain Analysis. Up to 11 automated peak markers provide frequency and magnitude values of each peak. The Reference marker is always the highest peak shown and is indicated in red.

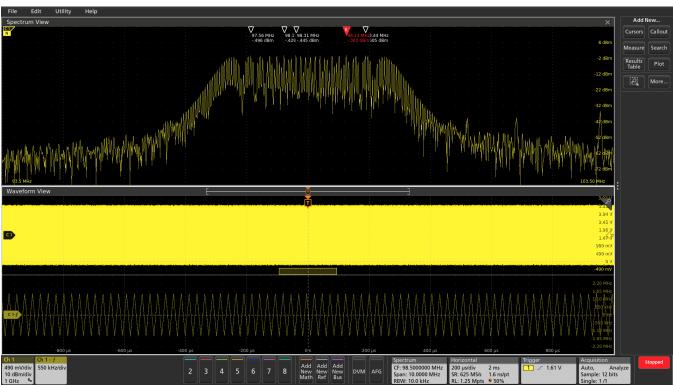
Visualizing changes in the RF signal (optional)

RF time domain traces make it easy to understand what's happening with a time-varying RF signal. There are three RF time domain traces that are derived from the underlying I and Q data of Spectrum View:

- Magnitude The instantaneous amplitude of the spectrum vs. time.
- Frequency The instantaneous frequency of the spectrum relative to the center frequency vs. time.
- Phase The instantaneous phase of the spectrum relative to the center frequency vs. time.

Each of these traces can be turned on and off independently, and all three can be displayed simultaneously.


The data is stored as in-phase and quadrature (I&Q) samples and precise synchronization is maintained between the time domain data and the I&Q data.


When RF vs. Time traces are activated, IQ data can be captured and exported to file for more advanced analysis within 3rd party applications.

With frequency on the x-axis, time on the y-axis, and power level indicated by variations in color, the Spectrogram display (included with option RFVT) offers enhanced insight into changes in signal amplitude and frequency content over time, allowing you to see where and when changes in spectral activity occur. This makes it ideal for displaying trends in spectral data such as when diagnosing complex spurious, frequency hopping, multi-channel, and dynamic

Spectrogram benefits include:

- Ability to view all spectrum activity in a given span and acquisition immediately, without having to specify FFT overlap or Spectrum Time
- Quickly compare spectrum at different moments in time using timecorrelated cursors and up to three overlaid spectrum traces
- Pinch and zoom in on spectral activity of interest with display resolution and FFT overlap automatically optimized
- Adjust center frequency, span, RBW, and amplitude color-scaling as needed to view all signals of interest
- Simultaneously view trends in multi-channel or non-contiguous spectrum by activating spectrograms on each available oscilloscope channel and independently setting center frequency and amplitude scaling

The lower trace is the frequency vs. time trace derived from the input signal. Notice that the Spectrum Time is positioned during a transition from the lowest frequency to the middle frequency, so the energy is spread across a number of frequencies. With the frequency vs. time trace, you can easily see the different frequency hops, simplifying characterization of how the device switches between frequencies.

23

Triggering on changes in the RF signal (optional)

Whether you need to find the source of electromagnetic interference or understand the behavior of a VCO, hardware triggers for RF versus time make it easy to isolate, capture, and understand the RF signal behavior. Trigger on edges, pulse widths, and timeout behavior of RF magnitude vs. time and RF frequency vs. time.

Comprehensive vector signal analysis with SignalVu-PC (optional)

The Tektronix 6 Series B MSO, combined with available analysis software, offers cost-effective mid-range performance as either a 4 channel, 10 GHz bandwidth, or 8 channel, 5 GHz bandwidth multi-channel, multi-domain Vector Signal Analysis (VSA) solution.

When analysis needs go beyond the basic spectrum, amplitude, frequency, and phase vs. time you can employ the SignalVu-PC vector signal analysis application. This enables in-depth transient RF signal analysis, detailed RF pulse characterization, and comprehensive analog and digital RF modulation analysis.

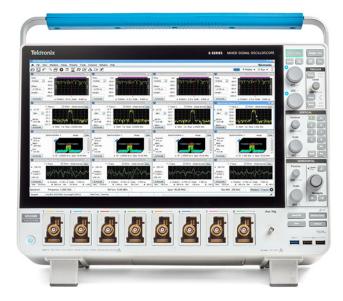
Tektronix' mixed signal oscilloscope based approach to 5G test, with dedicated DDC's on each channel and 5G New Radio (NR) SignalVu-PC VSA software, offers a novel approach to validate 5G NR designs that the traditional RF engineer may not have considered previously due to technical limitations offered by traditional FFT-based oscilloscopes, and offers benefits for analyzing both time, frequency, and modulation domains simultaneously across multiple channels.

 The separate digital signal path for time and frequency domains and phase-matching between channels are critical for beamformer calibration. You can also analyze digital and analog/RF data simultaneously, to validate latency, modulation accuracy, and perform power efficiency or system-level debugging.

5G NR transmitter measurements core supported features

The 5GNR option (5GNRNL-SVPC) supports 5G NR modulation analysis measurements according to Release 15 and Release 16 of 3GPP's TS 38 specifications, including:

- Analysis of uplink and downlink frame structures
- For the downlink, supported test models for FDD and TDD
- · For the uplink, supported test models for FDD
- Modulation Accuracy (including Error Vector Magnitude (EVM) and IQ error)
- Channel Power (CHP)
- · Adjacent Channel Power (ACP)
- Spectrum Emission Mask (SEM)
- Occupied Bandwidth
- Power vs Time (PVT)
- Summary table with all scalar results for Modulation Accuracy, ACP, CHP, SEM, and OBW measurements
- In-depth analysis and troubleshooting with coupled measurements across domains, use multiple markers to correlate results to find the root cause.
- Automate measurements using SCPI commands and save/recall configuration parameters and measurement results in .TIQ or .CSV format
- Configurable parameters of PDSCH or PUSCH for each component carrier

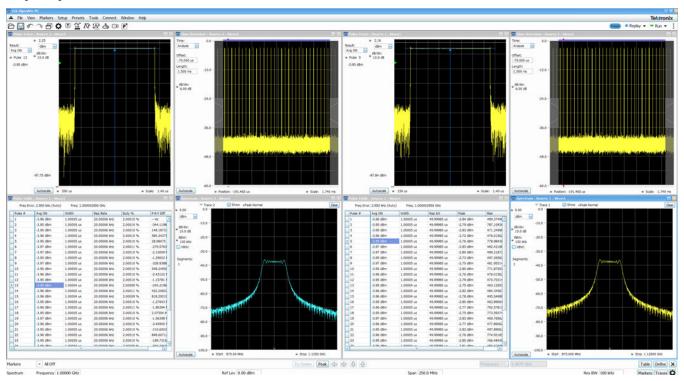


5GNR measurements from SignalVu-PC provide insight into 5GNR designs

To enable the SignalVu-PC application on your 6 Series MSO Oscilloscope, three options are required.

- 1. To run the application on the instrument, the Windows SSD (6-WIN) needs to be installed in the oscilloscope.
- 2. The Spectrum View RF versus time traces option (6-SV-RFVT) needs to be installed in the oscilloscope to enable I/Q data transfer.
- The Connect (CONxx-SVPC) license needs to be installed on the SignalVu-PC to enable base features of application, which includes 16+ RF measurements and displays.

The RF digital down converters and integrated measurement engines behind each channel have your complex mixed-signal and mixed-domain analysis needs covered in one instrument.

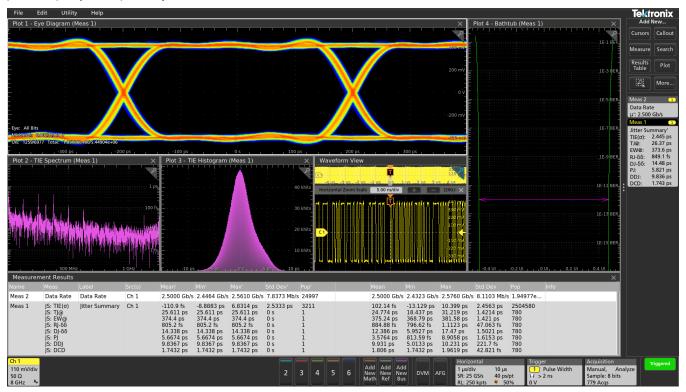


MSO68 showing SignalVu-PC multi-channel VSA software running on the instrument

Advanced pulse analysis (optional)

The per-channel DDC available on the 6 Series MSO offers the ability to analyze RF signals independently on all channels, including configuration of separate timing, triggering and measurements. This capability extends to evaluation of time, frequency and modulation domains simultaneously when using the SignalVu-PC VSA software.

The Advanced Pulse Analysis Option (SVPNL-SVPC) allows you to analyze multiple radar signals across measurement channels on a common timebase with independent or coordinated controls and measurements.


The advanced pulse analysis application in SignalVu-PC offers up to 31 automated pulse parameter measurements, statistics, and displays for analysis on up to 8 signal sources simultaneously, streamlining workflows and boosting efficiency.

Jitter analysis

The 6 Series MSO has seamlessly integrated the DPOJET Essentials jitter and eye pattern analysis software package, extending the oscilloscope's capabilities to take measurements over contiguous clock and data cycles in a single-shot real-time acquisition. This enables measurement of key jitter and timing analysis parameters such as Time Interval Error and Phase Noise to help characterize possible system timing issues.

Analysis tools, such as plots for time trends and histograms, quickly show how timing parameters change over time, and spectrum analysis quickly shows the precise frequency and amplitude of jitter and modulation sources.

Option 6-DJA adds additional jitter analysis capability to better characterize your device's performance. The 31 additional measurements provide comprehensive jitter and eye-diagram analysis and jitter decomposition algorithms, enabling the discovery of signal integrity issues and their related sources in today's high-speed serial, digital, and communication system designs. Option 6-DJA also provides eye diagram mask testing for automated pass/fail testing.

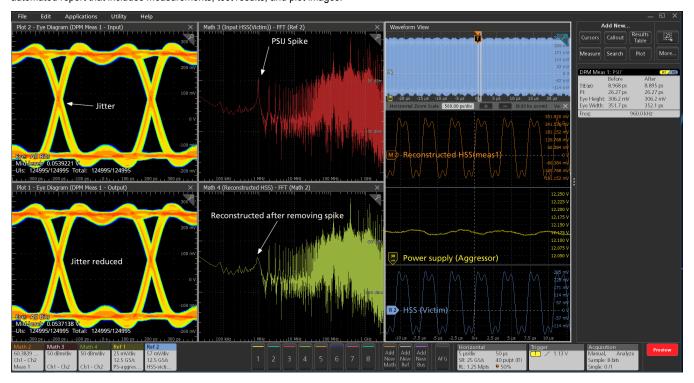
The unique Jitter Summary provides a comprehensive view of your device's performance in a matter of seconds.

Power analysis (optional)

The 6 Series MSO has also integrated the optional power analysis package into the oscilloscope automatic measurement system to enable quick and repeatable analysis of power quality, input capacitance, in-rush current, harmonics, switching loss, safe operating area (SOA), modulation, ripple, Magnetics measurements, efficiency, amplitude and timing measurements, slew

rate (dv/dt and di/dt), Control Loop Response (Bode Plot), and Power Supply Rejection Ratio (PSRR).

Measurement automation optimizes the measurement quality and repeatability at the touch of a button, without the need for an external PC or complex software setup.


The Power Analysis measurements display a variety of waveforms and plots.

Digital power management (optional)

The Digital Power Management and analysis (DPM) software option provides automated power rail measurements for Power Integrity Analysis on the 6 Series MSO oscilloscopes. The solution enables both simultaneous analysis of multiple power rails (using power rail probes) and sequencing of measurements (using passive probes). The solution is designed with the user work flow in mind to help design engineers meet their time-to-market needs. It also generates an automated report that includes measurements, test results, and plot images.

Key measurements include ripple, ripple-on-ripple, power sequencing, jitter analysis, transient analysis, power integrity and signal integrity analysis.

The Power Supply Induced Jitter (PSIJ) measurement acts as a tool that gives insights and confidence to signal integrity engineers to model the effects of hardware changes, to test their effectiveness before actually making them. The measurement provides essential results such as eye height, eye width, PJ, and TIE before and after filtering.

Inverter Motor Drive Analysis (IMDA)(optional)

On the left is a Phasor diagram displaying the phase and magnitude of current and voltage measurements for all three phases of power. In the results badge on the right, are the results from the automated measurements of power quality.

During the design and validation of systems that utilize 3-Phase power, it can be difficult to correlate control systems and power electronics with the performance of the overall system.

This will give you deeper insights enabling you to debug the design, efficiency and reliability of:

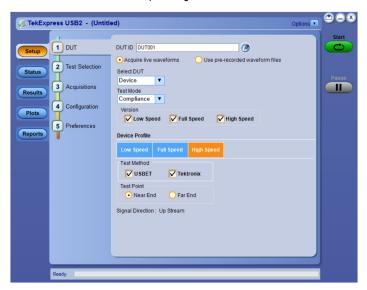
- 3-Phase power inverters, converters, power supplies, and automotive 3-Phase designs for DC-AC topology
- Motors (brushless AC, brushless DC, induction, permanent magnet, universal, stepper, rotor)
- Drives (AC, DC, variable frequency, servo)

The automated measurements that are included with 6-IMDA are:

- Input analysis
 - Power quality with phasor diagram
 - Harmonics
 - Input voltage
 - Input current
 - Input power
- Ripple analysis
 - Line Ripple
 - Switching Ripple
- Output analysis

- Phasor diagram
- Efficiency
- Mechanical Power
- System Efficiency
- Wiring configurations
 - 1 Volt/1 Current 1P2W
 - 2 Volt/2 Current 1P3W
 - 2 Volt/2 Current 3P3W
 - 3 Volt/3 Current 3P3W
 - 3 Volt/3 Current 3P4W

Compliance test


A key focus area for embedded designers is testing various embedded and interface technologies for compliance. This ensures the device passes the logo certification at plugfests and achieves successful interoperability when working with other compliant devices.

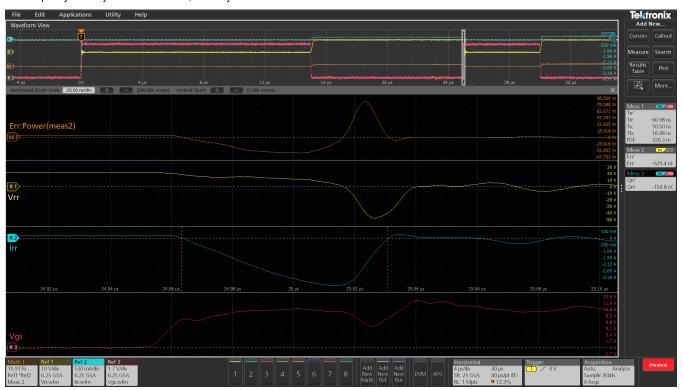
The compliance test specifications for high speed serial standards like USB, Ethernet, Memory, Display and MIPI are developed by the respective consortiums, or governing bodies. Working closely with these consortiums, Tektronix has developed oscilloscope-based compliance applications that not only focus on providing pass/fail results but also provide deeper insight into any failures by providing relevant measurement tools such as jitter and timing analysis to debug failing designs.

30

These automated compliance applications are built on a framework that provides:

- · Complete test coverage per the specification.
- Fast test times with optimized acquisitions and test sequencing based on customized settings.
- Analysis based on previously-acquired signals, allowing the device under test (DUT) to be disconnected from the setup once all acquisitions are completed. This also allows analysis of waveforms acquired on a different oscilloscope or captured at a remote lab, facilitating a very collaborative test environment.
- Signal validation during acquisition to ensure the right signals are being captured.
- · Additional parametric measurements for design debug.
- · Custom eye diagram mask testing for insight into design margin.
- Detailed reports in multiple formats with setup information, results, margins, waveform screenshots and plot images.

TekExpress USB2 (Option 6-CMUSB2) DUT panel configures the DUT-specific settings


Wide Bandgap Double Pulse Test (optional)

The Wide Bandgap Double Pulse Test application offers precise Wide Bandgap measurements that make device and the system validation easier. It has an ability to test SiC or GaN devices and also Si MOSFET and IGBTs. The application is compatible with all the Tektronix VPI probes and when used with the Tektronix IsoVu™ probes, it helps uncover all the hidden artifacts of SiC or GaN devices at the circuit level. The application offers automated measurements as per the JEDEC and IEC standards. It offers unique features such as per-cycle analysis with annotation, flexibility with custom reference

level settings, configurable integration points, and power preset that can be set based on the DUT designs.

Following measurements are performed:

- Low side switching parameters and High side diode reverse recovery measurements
- Low side and High side switching parameters
- RDS(on) Dynamic Resistance

The image shows diode reverse recovery measurements with reverse recovery current and voltage captured on the high-side.

Designed with your needs in mind Connectivity

The 6 Series MSO contains a number of ports which you can use to connect the instrument to a network, directly to a PC, or to other test equipment.

- Two USB 2.0 and one USB 3.0 host ports on the front and four more USB host ports (two 2.0, two 3.0) on the rear panel enable easy transfer of screen shots, instrument settings, and waveform data to a USB mass storage device. A USB mouse and keyboard can also be attached to USB host ports for instrument control and data entry.
- The rear panel USB Device port is useful for controlling the oscilloscope remotely from a PC.
- The standard 10/100/1000BASE-T Ethernet port on the rear of the instrument enables easy connection to networks and provides LXI Core 2011 compatibility.
- The DVI-D, DisplayPort and VGA ports on the rear of the instrument let you
 duplicate the instrument display on an external monitor or projector.

The I/O you need to connect the 6 Series MSO to the rest of your design environment.

Upgrade Automated Test Equipment (ATE) systems quickly and smoothly

Anyone working closely with automated test systems knows that moving to a new model or platform can be painful. Modifying an existing codebase for a new product can be prohibitively expensive and complicated. Now there's a solution.

All 6 Series MSO's include a Programmatic Interface (PI) Translator. When enabled, the PI Translator acts as an intermediate layer between your test application and the oscilloscope. It recognizes a subset of legacy commands

from the popular DPO/MSO5000B and DPO7000C platforms and translates them on the fly into supported commands for the 6 Series MSO. The Translator interface is designed to be human-readable and easily extensible, which means that you can customize its behavior to minimize the amount of effort required when transitioning to your new oscilloscope.


Remote operation to improve collaboration

Want to collaborate with a design team on the other side of the world?

The included e*Scope® capability enables fast control of an oscilloscope running the Embedded Operating System over a network connection. This can be viewed from any PC or device through a standard web browser.

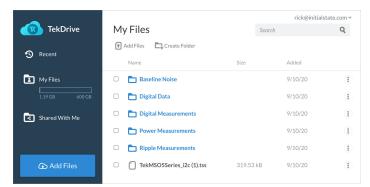
Simply enter the IP address or network name of the oscilloscope and a web page will be served to the browser. Control the oscilloscope remotely in the exact same way that you do in-person using the built-in touchscreen. Alternatively for oscilloscopes with the Microsoft Windows 10 Operating System, you can use Windows Remote Desktop™ to connect directly to the instrument and control it remotely.

The industry-standard TekVISA™ protocol interface is included for using and enhancing Windows applications for data analysis and documentation. IVI-COM instrument drivers are included to enable easy communication with the oscilloscope using LAN or USBTMC connections from an external PC.

e*Scope provides simple remote viewing and control using common web browsers.

PC-based analysis and remote connection to your oscilloscope

Get the analysis capability of an award-winning oscilloscope on your PC. Analyze waveforms anywhere, anytime. The basic license lets you view and analyze waveforms, perform many types of measurements and decode the most common serial buses - all while remotely accessing your oscilloscope. Advanced license options add capabilities such as multi-scope analysis, more serial bus decoding options, jitter analysis, and power measurements.


TekScope PC analysis software runs on a Windows computer with the same awardwinning user experience as the 4, 5, and 6 Series MSO's

Key features of the TekScope PC analysis software include:

- Connect to the instrument remotely and enable low-latency waveform updates using high-speed TekHSI data transfers.
- Share the data remotely with your colleagues so that they can perform analysis and make measurements as if they were sitting in front of the oscilloscope
- Synchronize waveforms from the multiple oscilloscopes in real-time
- Perform advanced analysis even if your oscilloscope is not equipped with TekScope PC analysis software
- Recall Tektronix oscilloscope sessions and waveform files from the equipment made by Tektronix and other vendors.
- Waveform file formats supported include .wfm, .isf, .csv, .h5, .tr0, .trc, and .bin

TekDrive collaborative test and measurement workspace

Using TekDrive, you can upload, store, organize, search, download, and share any file type from any connected device. TekDrive is natively integrated into the instrument for seamless sharing and recalling of files - no USB stick is required. Analyze and explore standard files like .wfm, .isf, .tss, and .csv, directly in a browser with smooth interactive waveform viewers. TekDrive is purpose built for integration, automation, and security.

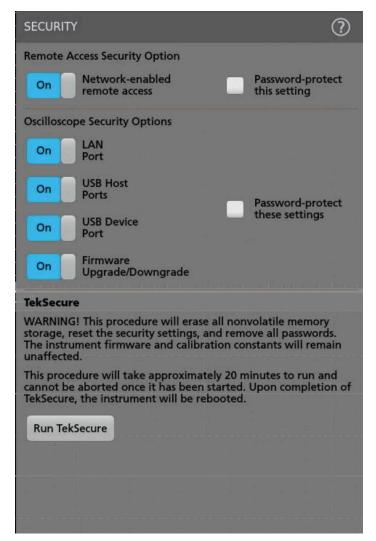
TekDrive collaborative workspace - save files directly from your instrument and share across your team

Arbitrary/Function Generator (AFG)

The instrument contains an optional integrated arbitrary/function generator, perfect for simulating sensor signals within a design or adding noise to signals to perform margin testing. The integrated function generator provides output of predefined waveforms up to 50 MHz for sine, square, pulse, ramp/triangle, DC, noise, sin(x)/x (Sinc), Gaussian, Lorentz, exponential rise/fall, Haversine and cardiac. The AFG can load waveform records up to 128 k points in size from an internal file location or a USB mass storage device.

The AFG feature is compatible with Tektronix' ArbExpress PC-based waveform creation and editing software, making creation of complex waveforms fast and easy.

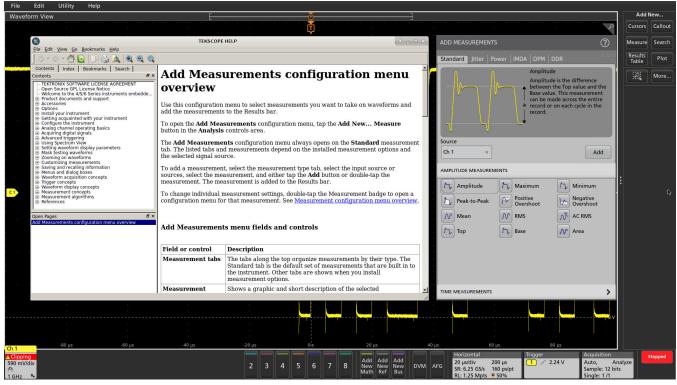
Digital Voltmeter (DVM) and Trigger Frequency Counter


The instrument contains an integrated 4-digit digital voltmeter (DVM) and 8-digit trigger frequency counter. Any of the analog inputs can be a source for the voltmeter, using the same probes that are already attached for general oscilloscope usage. The trigger frequency counter provides a very precise readout of the frequency of the trigger event on which you're triggering.

Both the DVM and trigger frequency counter are available for free and are activated when you register your product.

Enhanced security

The 6 Series B MSO provides you with the option to protect company data through the Security menu. This includes the option to restrict access to the instrument by password-protecting remote network access, I/O ports, and firmware updates to ensure the security of the data. By default, the oscilloscope disables remote access on initial use and gives you the option to enable remote access with or without a password.


To clear user data, run TekSecure from the menu. Sanitize the oscilloscope by removing the SSD from the bottom of the instrument.

Help when you need it

Several helpful resources are included so you can get your questions answered rapidly without having to find a manual or go to a website:

- Graphical images and explanatory text are used in numerous menus to provide quick feature overviews.
- All menus include a question mark icon in the upper right that takes you directly to the portion of the integrated help system that applies to that menu.
- A short user interface tutorial is included in the Help menu for new users to come up to speed on the instrument in a matter of a few minutes.

Integrated help answers your questions rapidly without having to find a manual or go to the internet.

Specifications

All specifications are guaranteed and apply to all models unless noted otherwise.

Model overview

Oscilloscope

	MSO64B	MSO66B	MSO68B						
FlexChannel inputs	4	6	8						
Maximum analog channels	4	6	8						
Maximum digital channels (with optional logic probes)	32	48	64						
Bandwidth (calculated rise time)	1 GHz (400 ps), 2.5 GHz (160 ps), 4 GHz (100 ps), 6 GHz (66.67 ps), 8 GHz (50 ps), 10 GHz (40 ps)								
	Derate 10 GHz Bandwidth at 0.05 dB/5 °C above 23 °C. Derate 8 GHz Bandwidth at 0.02 dB/5 °C above 23 °C								
DC Gain Accuracy	50 Ω: ±2.0% ² at >2 mV/div (±2.0% at 2 mV/div (±	mV/div typical, ±4% at 1`mV/div typical)							
	50Ω : ±1.0% 3 of full scale at >2 mV/div, (±1.0% of full scale at 2 mV/div typical, ±2%	6 at 1 mV/div typical)						
	1 M Ω : ±2.0% ² at >2 mV/div (±2% at 2 m	V/div, ±2.5% at 1 mV/div typical and 500`μ	V/div typical)						
	1 M Ω : ±1.0% ³ of full scale at >2 mV/div,	(±1.0% of full scale at 2 mV/div typical, ±1.	25% at 1 mV/div and 500`μV/div, typical)						
ADC Resolution	12 bits								
Vertical Resolution	8 bits @ 50 GS/s; 10 GHz on 2 channels	8 bits @ 50 GS/s; 10 GHz on 2 channels							
Note: Vertical resolution specified	8 bits @ 25 GS/s; 10 GHz on 4 channels								
based on the number of channels used.	12 bits @ 12.5 GS/s (High Res); 5 GHz on 4 channels (8 bits @ 12.5 GS/s; 5 GHz on >4 channels)								
	13 bits @ 6.25 GS/s (High Res); 2 GHz on 4 channels (12 bits @ 6.25 GS/s (High Res); 2 GHz on >4 channels)								
	14 bits @ 3.125 GS/s (High Res); 1 GHz	on 4 channels (13 bits @ 3.125 GS/s (High	Res); 1 GHz on >4 channels)						
	15 bits @ 1.25 GS/s (High Res); 500 MHz	z on 4 channels (14 bits @ 1.25 GS/s (High	Res); 500 MHz on >4 channels)						
	16 bits @ ≤625 MS/s (High Res); 200 MH	lz on 4 channels (15 bits @ 625 MS/s (High	n Res); 200 MHz on >4 channels)						
	16 bits @ ≤312.5 MS/s (High Res); 100 N	1Hz on >4 channels							
Sample Rate	50 GS/s on 2 analog / digital channels (20 on > 4 analog / digital channels (80 ps res) ps resolution); 25 GS/s on 4 analog / digit solution)	al channels (40 ps resolution); 12.5 GS/s						
Record Length		els, (125 Mpoints, 250 Mpoints, 500 Mpoint Ill channels for MSO66B and MSO68B inst							
Waveform Capture Rate	>500,000 wfms/s (Peak Detect, Envelope	acquisition mode),							
	>30,000 wfms/s (all other acquisition modes)								
Arbitrary/Function Generator (opt.)	13 predefined waveform types with up to 50 MHz output								
DVM	4-digit DVM (free with product registration)								
Trigger Frequency Counter	8-digit frequency counter (free with produc	8-digit frequency counter (free with product registration)							

Vertical system- analog channels

DC, AC Input coupling

 $^{^2}$ $\,$ Immediately after SPC, add 2% for every 5 $^{\circ}\text{C}$ change in ambient.

³ Immediately after SPC, add 1% for every 5 °C change in ambient.

Input impedance 1 M Ω DC coupled 1 M Ω ±1%

Input capacitance 1 MΩ DC coupled, typical

14.5 pF ±1.5 pF

Input impedance 50 Ω , DC coupled 50 $\Omega \pm 3\%$

Input sensitivity range

1 ΜΩ 500 µV/div to 10 V/div in a 1-2-5 sequence

Note: $500 \,\mu\text{V/div}$ is a 2X digital zoom of 1 mV/div.

50 Ω 1 mV/div to 1 V/div in a 1-2-5 sequence

1 mV/div is a 2X digital zoom of 2 mV/div.

Maximum input voltage

50 Ω : 2.3 V_{RMS} at <100 mV/div, with peaks \leq ±20 V (Pulse Width \leq 1 us)

50 Ω: 5.5 V_{RMS} at ≥100 mV/div, with peaks ≤ ±20 V (Pulse Width ≤ 200 us)

1 M Ω : 300 V_{RMS} with peaks $\leq \pm 425$ V

Derate at 20 dB/decade between 4.5 MHz and 45 MHz; derate 14 dB/decade between 45 MHz and 450 MHz. Above 450

MHz, 5.5 VRMS

Effective bits (ENOB), typical

2 mV/div, High Res mode, 50 Ω , 10 MHz input with 90% full screen

Bandwidth	ENOB
5 GHz	5.7
4 GHz	5.9
3 GHz	6.1
2.5 GHz	6.2
2 GHz	6.35
1 GHz	6.8
500 MHz	7.25
350 MHz	7.5
250 MHz	7.65
200 MHz	7.85
20 MHz	9.25

50 mV/div, High Res mode, 50 Ω , 10 MHz input with 90% full screen

Bandwidth	ENOB
5 GHz	7.4
4 GHz	7.6
3 GHz	7.85
2.5 GHz	7.95
2 GHz	8.05
1 GHz	8.45
500 MHz	8.65
Table continued	,

Bandwidth	ENOB
350 MHz	8.8
250 MHz	8.85
200 MHz	8.9
20 MHz	9.85

2 mV/div, Sample mode, 50 Ω , 10 MHz input with 90% full screen

Bandwidth	ENOB
10 GHz	4.95
9 GHz	5.1
8 GHz	5.2
7 GHz	5.35
6 GHz	5.55

50 mV/div, Sample mode, 50 $\Omega,\,10$ MHz input with 90% full screen

Bandwidth	ENOB
10 GHz	6.6
9 GHz	6.75
8 GHz	6.85
7 GHz	7
6 GHz	7.15

DC gain accuracy

50 Ohm

 $\pm 2.0\%^4$ ($\pm 2.0\%$ at 2 mV/div, $\pm 4\%$ at 1 mV/div, typical)

 $\pm 1.0\%^5$ of full scale, ($\pm 1.0\%$ of full scale at 2 mV/div, $\pm 2\%$ at 1 mV/div, typical)

Position range

±5 divisions

Offset ranges, maximum

Input signal cannot exceed maximum input voltage for the 50 Ω input path.

Volts/div Setting	Maximum offset range, 50 Ω Input
1 mV/div - 99 mV/div	±1 V
100 mV/div - 1 V/div	±10 V

Volts/div Setting	Maximum offset range, 1 M Ω Input		
500 μV/div - 63 mV/div	±1 V		
64 mV/div - 999 mV/div	±10 V		
Table continued			

⁴ Immediately following SPC, add 2% for every 5 °C change in ambient.

Volts/div Setting	Maximum offset range, 1 MΩ Input
1 V/div - 10 V/div	±100 V

Offset accuracy

50 Ohm DC-coupled ≥5mV/div: ± (0.005 X |offset - position| + 0.087 div)

> $2mV/div: \pm (0.005 \text{ X | offset - position}] + 0.13 div)$ 1mV/div: ± (0.005 X |offset - position| + 0.224 div)

1 MOhm DC-coupled \geq 5mV/div: \pm (0.005 X |offset – position| + 0.2 div)

> 2mV/div: ± (0.005 X |offset - position| + 0.237 div) 1mV/div: ± (0.005 X |offset - position| + 0.384 div)

Offset and position in units of Volts

Bandwidth selections

10 GHz model, 50 Ohm 20 MHz, 200 MHz, 250 MHz, 350 MHz, 500 MHz, 1 GHz, 2 GHz, 2.5 GHz, 3 GHz, 4 GHz, 5 GHz, 6 GHz, 7 GHz, 8 GHz, 9

GHz, and 10 GHz

8 GHz model, 50 Ohm 20 MHz, 200 MHz, 250 MHz, 350 MHz, 500 MHz, 1 GHz, 2 GHz, 2.5 GHz, 3 GHz, 4 GHz, 5 GHz, 6 GHz, 7 GHz, and 8 GHz

6 GHz model, 50 Ohm 20 MHz, 200 MHz, 250 MHz, 350 MHz, 500 MHz, 1 GHz, 2 GHz, 2.5 GHz, 3 GHz, 4 GHz, 5 GHz, and 6 GHz

4 GHz model, 50 Ohm $20~\text{MHz},\,200~\text{MHz},\,250~\text{MHz},\,350~\text{MHz},\,500~\text{MHz},\,1~\text{GHz},\,2~\text{GHz},\,2.5~\text{GHz},\,3~\text{GHz},\,\text{and}\,4~\text{GHz}$

2.5 GHz model, 50 Ohm 20 MHz, 200 MHz, 250 MHz, 350 MHz, 500 MHz, 1 GHz, 2 GHz, and 2.5 GHz

1 GHz model, 50 Ohm 20 MHz, 200 MHz, 250 MHz, 350 MHz, 500 MHz, and 1 GHz

Bandwidth filtering optimized for Flatness or Step response

Random noise, RMS, typical

50 Ω, typical

50 GS/s, Sample Mode, RMS

V/div	1 mV/div	2 mV/div	5 mV/div	10 mV/div	20 mV/div	50 mV/div	100 mV/div	1 V/div
10 GHz	183 µV	188 µV	228 μV	346 µV	602 μV	1.39 mV	3.58 mV	27.4 mV
9 GHz	167 µV	172 µV	208 μV	315 µV	549 μV	1.27 mV	3.22 mV	25 mV
8 GHz	153 µV	156 µV	192 μV	287 μV	501 μV	1.15 mV	2.94 mV	23.1 mV
7 GHz	139 μV	141 µV	175 μV	262 μV	457 μV	1.07 mV	2.68 mV	21.1 mV
6 GHz	124 μV	127 µV	156 μV	234 μV	412 μV	949 μV	2.39 mV	19 mV

25 GS/s, HiRes Mode, RMS

V/div	1 mV/div	2 mV/div	5 mV/div	10 mV/div	20 mV/div		100 mV/div	1 V/div
5 GHz	111 µV	112 µV	134 µV	197 µV	338 µV	772 µV	1.99 mV	15.4 mV
Table continued	•	•	•	•	•			

⁵ Immediately following SPC, add 1% for every 5 °C change in ambient.

V/div	1 mV/div	2 mV/div	5 mV/div	10 mV/div	20 mV/div	50 mV/div	100 mV/div	1 V/div
4 GHz	97.4 μV	98.7 μV	117 µV	171 µV	291 μV	672 μV	1.73 mV	13.3 mV
3 GHz	83.8 µV	85 µV	101 μV	144 µV	245 μV	559 μV	1.46 mV	11.2 mV
2.5 GHz	75.6 µV	76.6 µV	90.7 μV	128 µV	219 µV	498 μV	1.3 mV	9.85 mV
2 GHz	68.9 µV	69.9 µV	81.7 µV	116 µV	195 μV	444 µV	1.17 mV	8.78 mV
1 GHz	51.1 μV	51.8 µV	59.9 µV	82.9 µV	138 μV	314 µV	829 µV	6.22 mV
500 MHz	37.5 μV	38 µV	43.4 µV	60 μV	99.9 µV	230 μV	607 μV	4.61 mV
350 MHz	31.9 µV	32.3 µV	36.9 µV	49.9 µV	82.1 µV	185 µV	499 µV	3.62 mV
250 MHz	28.1 µV	28.5 µV	32.5 µV	44 µV	71.5 µV	161 µV	440 µV	3.19 mV
200 MHz	24.2 µV	24.5 μV	28 μV	37.9 μV	62.3 µV	140 µV	383 µV	2.78 mV
20 MHz	8.68 µV	8.8 µV	10.1 μV	13.8 µV	22.9 µV	52.8 μV	136 μV	1.04 mV

1 $M\Omega$, High Res mode (RMS), typical

V/div	1 mV/div	2 mV/div	5 mV/div	10 mV/div	20 mV/div	50 mV/div	100 mV/div	1 V/div
500 MHz	186 µV	202 μV	210 µV	236 μV	288 μV	522 μV	1.25 mV	13.4 mV
350 MHz	134 µV	138 μV	145 µV	163 µV	216 µV	391 μV	974 μV	10.6 mV
250 MHz	108 μV	110 µV	114 µV	131 µV	182 μV	374 μV	838 µV	9.63 mV
200 MHz	106 μV	108 μV	109 μV	117 µV	149 µV	274 μV	674 µV	8.01 mV
20 MHz	73 µV	73.2 µV	78.1 µV	99.6 µV	158 µV	361 µV	801 µV	8.29 mV

Crosstalk (channel isolation), typical

≥50 dB up to 2 GHz

≥45 dB up to 5 GHz

≥40 dB up to 10 GHz

for any two channels set to 200 mV/div.

Vertical system - digital channels

Number of channels 8 digital inputs (D7-D0) per installed TLP058 (traded off for one analog channel)

Vertical resolution

1 bit

Maximum input toggle rate

500 MHz

Minimum detectable pulse width, typical

300 ps

Thresholds

One threshold per digital channel

Threshold range

±40 V

Threshold resolution	10 mV
Threshold accuracy	± [100 mV + 3% of threshold setting after calibration]
Input hysteresis, typical	100 mV at the probe tip
Input dynamic range, typical	30 V_{pp} for $F_{in} \le 200$ MHz, 10 V_{pp} for $F_{in} > 200$ MHz
Absolute maximum input voltage, typical	±42 V peak
Minimum voltage swing, typical	400 mV peak-to-peak
Input impedance, typical	100 kΩ
Probe loading, typical	2 pF
Front end and RF system	n (all measurements are typical)
Sensitivity/Noise density	-157 dBm/Hz (1 mV/div, -38 dBm, 1.0001 GHz CF, 500 kHz span, 3 kHz RBW)
DANL	-163 dBm/Hz 10 MHz to 6 GHz, 1 mV/div
	-160 dBm/Hz >6 GHz to 10 GHz, 1 mV/div
Noise figure	17 dB (1 mV/div, -38 dBm, 1.001 GHz, 500 kHz span, 3 kHz RBW)
SNR/Dynamic range	112 dB (1 GHz input carrier, 0 dBm scope input range, 1 GHz CF, 100 MHz span, 1 kHz RBW, measured ±20 MHz from center)
Absolute amplitude accuracy	±1 dB (0 - 8 GHz) for max 10 GHz BW
Phase noise @ 1GHz	10 MHz offset: -140 dBc/Hz
	1 MHz offset: -132 dBc/Hz
	100 kHz offset: -118 dBc/Hz
	10 kHz offset: -118 dBc/Hz
EVM (256 QAM)	0.5% @ 20 MSymbols/s
	1.1% @ 800 MSymbols/s
	1.5% @ 1.2 GSymbols/s
	1.6% @ 2 GSymbols/s
SFDR	60 dB @ 3 GHz, 5 GHz span

70 dB @ 2.35 GHz, 1.5 GHz span

Return Loss (<100 mV/div) 12 dB <5GHz

8 dB 5 GHz to 10 GHz

Harmonic distortion 2nd Harmonic: -58 dBC with a 0 dBm, 1 GHz signal

3rd Harmonic: -55 dBC with a 0 dBm, 1 GHz signal

Two-tone third order intercept point 25 dBm 10 MHz to 6 GHz

(at 99 mV/div)

20 dBm 6 GHz to 8 GHz 12 dBm 8 GHz to 10 GHz

Horizontal system

Time base range 40 ps/div to 1,000 s/div

Sample rate range 6.25 S/s to 50 GS/s (real time - maximum value depends on channels used)

25 GS/s to 2.5 TS/s (interpolated - minimum value depends on channels used)

Record length range Applies to analog and digital channels. All acquisition modes are 1 G maximum record length, down to 1 k minimum record

length, adjustable in 1 sample increments.

Standard: 62.5 Mpoints

Option 6-RL-1: 125 Mpoints

Option 6-RL-2: 250 Mpoints

Option 6-RL-3: 500 Mpoints

Option 6-RL-4: 1 Gpoints

Seconds/Division range

Model	1 K	10 K	100 K	1 M	10 M	62.5 M	125 M	250 M	500 M	1 G
MSO6xB Standard 62.5 M	40 ps - 16 s	400 ps - 160 s	4 ns - 10	000 s		2.5 μs - 1000 s	N/A	N/A	N/A	N/A
MSO6xB Option 6-RL-1 125 M	40 ps - 16 s	400 ps - 160 s	4 ns - 10	000 s		2.5 μs - 1000 s	5 μs - 1000 s	N/A	N/A	N/A
MSO6xB Option 6-RL-2 250 M	40 ps - 16 s	400 ps - 160 s	4 ps - 10	000 s		2.5 µs - 1000 s	5 μs - 1000 s	10 μs - 1000 s	N/A	N/A
MSO6xB Option 6-RL-3 500 Mpts	40 ps - 16 s	400 ps - 160 s	4 ps - 10	000 s		2.5 us - 1000 s	5 us - 1000 s	10 us - 1000 s	20 us - 1000 s	N/A

Table continued...

Model	1 K	10 K	100 K	1 M	10 M	62.5 M	125 M	250 M	500 M	1 G
MSO6xB Option 6-RL-4: 1 Gpts	40 ps - 16 s	400 ps - 160 s	4 ps - 10	000 s			5 us - 1000 s		20 us - 1000 s	40 us - 1000 s

Aperture uncertainty (sample jitter)

Time duration	Typical jitter		
<1 µs	80 fs		
<1 ms	130 fs		

Timebase accuracy

±1.0 x10⁻⁷ over any ≥1 ms time interval

Description	Specification
Factory Tolerance	±12 ppb; at calibration, 25 °C ambient, over any ≥1 ms interval
	± 20 ppb across the full operating range of 0 °C to 50 °C, after a sufficient soak time at the temperature; tested at operating temperatures
Crystal aging	±300 ppb; frequency tolerance change at 25 °C over a period of 1 year

Delta-time measurement accuracy, nominal

$$DTA_{RMS} = \sqrt{\left(\frac{N}{SR_1}\right)^2 + \left(\frac{N}{SR_2}\right)^2 + t_j^2} + TBA \times t_p$$

(assume edge shape that results from Gaussian filter response)

The formula to calculate delta-time measurement accuracy (DTA) for a given instrument setting and input signal assumes insignificant signal content above Nyquist frequency, where:

SR₁ = Slew Rate (1st Edge) around 1st point in measurement

SR₂ = Slew Rate (2nd Edge) around 2nd point in measurement

N = RSS of input-referred noise (V_{RMS}) and dynamic noise estimate (volts rms)

Dynamic noise estimate* = $\sqrt{\frac{BW}{8 \text{ GHz}}} X 19.9 \times 10^{-3} \text{ X volts/div}$

TBA = time base accuracy or reference frequency error (which is 20 ppb)

t_i = aperture uncertainty (sec rms -80 fs for short durations)

t p = delta-time measurement duration (sec)

Maximum duration at highest sample rate

1.25 ms (std.) or 2.5 ms (opt. 6-RL-1, 125 Mpoints), 5 ms (opt. 6-RL-2, 250 Mpoints), 10 ms (opt. 6-RL-3, 500 Mpoints), or 20 ms (Opt. 6-RL-4, 1 Gpoints)

Time base delay time range

-10 divisions to 5,000 s

Deskew range

- -125 ns to +125 ns with a resolution of 40 ps (for Peak Detect and Envelope acquisition modes).
- -125 ns to +125 ns with a resolution of 1 ps (for all other acquisition modes).

Delay between analog channels, full \leq 10 ps for any two channels with input impedance set to 50 Ω , DC coupling with equal Volts/div or above 10 mV/div bandwidth, typical

Delay between analog and digital FlexChannels, typical

< 1 ns when using a TLP058 and a passive probe matching the bandwidth of the scope, with no bandwidth limits applied

Delay between any two digital FlexChannels, typical

320 ps

Delay between any two bits of a digital FlexChannel, typical

200 ps

Trigger system

Trigger modes

Auto, Normal, and Single

Trigger coupling

DC, HF Reject (attenuates > 50 kHz), LF Reject (attenuates < 50 kHz), noise reject (reduces sensitivity)

Trigger holdoff range

0 ns to 10 seconds

Trigger bandwidth (edge, pulse and logic), typical

Model	Trigger type	Trigger bandwidth
MSO6xB 10 GHz	Edge	10 GHz
MSO6xB 10 GHz	Pulse, Logic	4 GHz
MSO6xB 8 GHz	Edge	8 GHz
MSO6xB 8 GHz	Pulse, Logic	4 GHz
MSO6xB 6 GHz	Edge	6 GHz
MSO6xB 6 GHz	Pulse, Logic	4 GHz
MSO6xB 4 GHz, 2.5 GHz, 1 GHz	Edge, Pulse, Logic	Product Bandwidth

Edge-type trigger sensitivity, DC coupled, typical

Path	Range	Specification
1 MΩ path (all	0.5 mV/div to 0.99 mV/div	5 mV from DC to instrument bandwidth
models)	≥ 1 mV/div	The greater of 5 mV or 0.7 div from DC to lesser of 500 MHz or instrument BW, & 6 mV or 0.8 div from > 500 MHz to instrument bandwidth
50 Ω path	1 mV/div to 1.99 mV/div	3.5 div from DC to 80% of instrument bandwidth
	2 mV/div to 4.99 mV/div 2 divisions from DC to 80% of instrument bandwidth	
	≥ 5 mV/div	< 5 division from DC to 80% of instrument bandwidth
Line	90 V to 264 V line voltage at 50 - 60 Hz line frequency	103.5 V to 126.5 V
AUX Trigger in		250 mV _{PP} , DC to 400`MHz

Edge-type trigger sensitivity, n	ot
DC coupled, typical	

Trigger Coupling	Typical Sensitivity
NOISE REJ	2.5 times the DC Coupled limits
HF REJ	1.0 times the DC Coupled limits from DC to 50 kHz. Attenuates signals above 50 kHz.
LF REJ	1.5 times the DC Coupled limits for frequencies above 50 kHz. Attenuates signals below 50 kHz.

Trigger jitter, typical

- ≤ 1.5 ps_{RMS} for sample mode and edge-type trigger
- ≤ 2 ps_{RMS} for edge-type trigger and FastAcq mode
- ≤ 80 ps_{PP} for non edge-type trigger modes

Trigger jitter, AUX input, typical

≤ 40 ps_{RMS} for edge-type trigger and FastAcq mode

AUX In trigger skew between instruments, typical

±100 ps jitter on each instrument with 1.5 ns skew; ≤1.7 ns total between instruments.

Skew improves for pulse input voltages ≥1 V_{nn}

Trigger level ranges

This specification applies to logic and pulse thresholds.

Source	Range			
Any Channel	±5 divs from center of screen			
Aux In Trigger	±5 V			
Line	Fixed at about 50% of line voltage			

Trigger types

Edge: Positive, negative, or either slope on any channel. Coupling includes DC, AC, noise reject, HF reject, and LF reject

Pulse Width: Trigger on width of positive or negative pulses. Event can be time- or logic-qualified

Timeout: Trigger on an event which remains high, low, or either, for a specified time period. Event can be logic-qualified

Runt: Trigger on a pulse that crosses one threshold but fails to cross a second threshold before crossing the first again. Event can be

time- or logic-qualified

Window: Trigger on an event that enters, exits, stays inside or stays outside of a window defined by two user-adjustable thresholds.

Event can be time- or logic-gualified

Trigger when logic pattern goes true, goes false, or occurs coincident with a clock edge. Pattern (AND, OR, NAND, NOR) Logic:

specified for all input channels defined as high, low, or don't care. Logic pattern going true can be time-qualified

Setup & Hold: Trigger on violations of both setup time and hold time between clock and data present on any input channels

Rise / Fall Time: Trigger on pulse edge rates that are faster or slower than specified. Slope may be positive, negative, or either. Event can be

logic-qualified

Video (option 6-VID): Trigger on all lines, odd, even, or all fields of NTSC, PAL, and SECAM video signals

Sequence: Trigger on B event X time or N events after A trigger with a reset on C event. In general, A and B trigger events can be set to

any trigger type with a few exceptions: logic qualification is not supported, if A event or B event is set to Setup & Hold, then the

other must be set to Edge, and Ethernet and High Speed USB (480 Mbps) are not supported

Visual trigger Qualifies standard triggers by scanning all waveform acquisitions and comparing them to on-screen areas (geometric shapes).

An unlimited number of areas can be defined with In, Out, or Don't Care as the qualifier for each area. A boolean expression

can be defined using any combination of visual trigger areas to further qualify the events that get stored into acquisition

memory. Shapes include rectangle, triangle, trapezoid, hexagon and user-defined.

Parallel Bus: Trigger on a parallel bus data value. Parallel bus can be from 1 to 32 bits (from the digital and analog channels) in size.

Supports Binary and Hex radices

I²C Bus (option 6-SREMBD): Trigger on Start, Repeated Start, Stop, Missing ACK, Address (7 or 10 bit), Data, or Address and Data on I²C buses up to 10

I³C Bus (option 6-SRI3C) Trigger on Start, Repeated Start, Stop, Address, Data, I3C SDR Direct, I3C SDR Broadcast, Missing ACK, T-Bit Error, Broadcast

Address Error, Hot-Join, HDR Restart, HDR Exit on I3C buses up to 10 Mb/s

SPI Bus (option 6-SREMBD): Trigger on Slave Select, Idle Time, or Data (1-16 words) on SPI buses up to 20 Mb/s

RS-232/422/485/UART Bus (option 6-SRCOMP):

Trigger on Start Bit, End of Packet, Data, and Parity Error up to 15 Mb/s

CAN Bus (option 6-SRAUTO): Trigger on Start of Frame, Type of Frame (Data, Remote, Error, or Overload), Identifier, Data, Identifier and Data, End Of

Frame, Missing Ack, and Bit Stuff Error on CAN buses up to 1 Mb/s

CAN FD Bus (option 6-SRAUTO):

Trigger on Start of Frame, Type of Frame (Data, Remote, Error, or Overload), Identifier (Standard or Extended), Data (1-8 bytes), Identifier and Data, End Of Frame, Error (Missing Ack, Bit Stuffing Error, FD Form Error, Any Error) on CAN FD buses

up to 16 Mb/s

LIN Bus (option 6-SRAUTO):

FlexRay Bus (option 6-SRAUTO):

Trigger on Sync, Identifier, Data, Identifier and Data, Wakeup Frame, Sleep Frame, and Error on LIN buses up to 1 Mb/s Trigger on Start of Frame, Indicator Bits (Normal, Payload, Null, Sync, Startup), Frame ID, Cycle Count, Header Fields (Indicator Bits, Identifier, Payload Length, Header CRC, and Cycle Count), Identifier, Data, Identifier and Data, End Of Frame,

and Errors on FlexRay buses up to 10 Mb/s

SENT Bus (option 6-SRAUTOSEN)

Trigger on Start of Packet, Fast Channel Status and Data, Slow Channel Message ID and Data, and CRC Errors

SPMI Bus (option 6-SRPM): Trigger on Sequence Start Condition, Reset, Sleep, Shutdown, Wakeup, Authenticate, Master Read, Master Write, Register

> Read, Register Write, Extended Register Read, Extended Register Write, Extended Register Read Long, Extended Register Write Long, Device Descriptor Block Master Read, Device Descriptor Block Slave Read, Register 0 Write, Transfer Bus

Ownership, and Parity Error

USB 2.0 LS/FS/HS Bus (option

6-SRUSB2):

Trigger on Sync, Reset, Suspend, Resume, End of Packet, Token (Address) Packet, Data Packet, Handshake Packet, Special Packet, Error on USB buses up to 480 Mb/s

Ethernet Bus (option 6-

SRENET):

Trigger on Start of Frame, MAC Addresses, MAC Q-tag, MAC Length/Type, MAC Data, IP Header, TCP Header, TCP/IPV4 Data, End of Packet, and FCS (CRC) Error on 10BASE-T and 100BASE-TX buses

Audio (I2S, LJ, RJ, TDM) Bus

(option 6-SRAUDIO):

Trigger on Word Select, Frame Sync, or Data. Maximum data rate for I²S/LJ/RJ is 12.5 Mb/s. Maximum data rate for TDM is 25

MIL-STD-1553 Bus (option 6-SRAERO):

Trigger on Sync, Command (Transmit/Receive Bit, Parity, Subaddress / Mode, Word Count / Mode Count, RT Address), Status (Parity, Message Error, Instrumentation, Service Request, Broadcast Command Received, Busy, Subsystem Flag, Dynamic Bus Control Acceptance, Terminal Flag), Data, Time (RT/IMG), and Error (Parity Error, Sync Error, Manchester Error, Non-contiguous Data) on MIL-STD-1553 buses

ARINC 429 Bus (option 6-

SRAERO):

Trigger on Word Start, Label, Data, Label and Data, Word End, and Error (Any Error, Parity Error, Word Error, Gap Error) on

ARINC 429 buses up to 1 Mb/s

RF Magnitude vs. Time and RF Frequency vs. Time (option 6-SV-RFVT):

Trigger on edge, pulse width and timeout events

Acquisition system

Sample Acquires sampled values

Peak Detect Captures glitches as narrow as 160 ps at all sweep speeds

Averaging From 2 to 10,240 waveforms

Maximum averaging speed = 180 waveforms/s

Fast Hardware Averaging	An acquisition mode for acquiring a large number of averages in a short amount of time. Fast hardware averaging optimize the acquisition path, reducing storage truncation error and smoothing out fine scale non-linearity imperfections via an optional offset dithering technique. This feature is available through programmatic interface commands. From 2 to 1,000,000 waveforms Maximum averaging speed = 32,000 waveforms/s
Envelope	Min-max envelope reflecting Peak Detect data over multiple acquisitions
High Res	Applies a unique Finite Impulse Response (FIR) filter for each sample rate that maintains the maximum bandwidth possible for that sample rate while preventing aliasing and removing noise from the oscilloscope amplifiers and ADC above the usable bandwidth for the selected sample rate.
	High Res mode always provides at least 12 bits of vertical resolution and extends all the way to 16 bits of vertical resolution at ≤ 625 MS/s sample rates.
FastAcq®	FastAcq optimizes the instrument for analysis of dynamic signals and capture of infrequent events.
	Maximum waveform capture rate:
	 >500,000 wfms/s (Peak Detect or Envelope Acquisition mode) >30,000 wfms/s (All other acquisition modes)
Roll mode	Scrolls sequential waveform points across the display in a right-to-left rolling motion, at timebase speeds of 40 ms/div and slower, when in Auto trigger mode.
History mode	Makes use of the maximum record length, allowing you to capture many triggered acquisitions, stop when you see something of interest, and quickly review all stored triggered acquisitions. The number of available acquisitions stored in history is (Maximum record length) / (Current record length setting).
FastFrame™	Acquisition memory divided into segments.
	Maximum trigger rate >5,000,000 waveforms per second
	Minimum frame size = 50 points
	For record lengths up to 250M, and for frame size ≥ 1,000 points, maximum number of frames = record length / frame size.
	For record lengths of 500M, and when only channels capable of a maximum sample rate of \geq 25GS/s are used, maximum number of frames = record length / frame size.
	For record lengths of 500M, and when any channels capable of a maximum sample rate of 12.5 GS/s are used, maximum number of frames is \geq 250,000.
	For record lengths of 1G, and when only channels capable of a maximum sample rate of \geq 25 GS/s are used, maximum number of frames \geq record length / frame size / 2.
	For record lengths of 1G, and when only channels capable of a maximum sample rate of 12.5 GS/s are used, maximum number of frames ≥ record length / frame size / 4.
	For 50 point frames, maximum number of frames = 1,000,000

Waveform measurements

Waveform, V Bars, H Bars, V&H Bars, and Polar (XY/XYZ plots only) **Cursor types**

DC voltage measurement accuracy
Average acquisition mode

Measurement Type	DC Accuracy (In Volts)
	±(DC Gain Accuracy * reading - (offset - position) + Offset Accuracy + 0.15 div + 0.6 mV)
Delta volts between any two averages of ≥ 16 waveforms acquired with the same oscilloscope setup and ambient conditions	±(DC Gain Accuracy * reading + 0.15 div + 1.2 mV)

Automatic measurements	36, of which an unlimited number can be displayed as either individual measurement badges or collectively in a measurement results table		
Amplitude measurements	Amplitude, Maximum, Minimum, Peak-to-Peak, Positive Overshoot, Negative Overshoot, Mean, RMS, AC RMS, Top, Base, and Area		
Timing measurements	Period, Frequency, Unit Interval, Data Rate, Positive Pulse Width, Negative Pulse Width, Skew, Delay, Rise Time, Fall Time Phase, Rising Slew Rate, Falling Slew Rate, Burst Width, Positive Duty Cycle, Negative Duty Cycle, Time Outside Level, Setup Time, Hold Time, Duration N-Periods, High Time, Low Time, Time to Minimum, and Time to Maximum		
Jitter measurements (standard)	TIE and Phase Noise		
Measurement statistics	Mean, Standard Deviation, Maximum, Minimum, and Population. Statistics are available on both the current acquisition and all acquisitions		
Reference levels	User-definable reference levels for automatic measurements can be specified in either percent or units. Reference levels can be set to global for all measurements, per source channel or signal, or unique for each measurement		
Gating	Screen, Cursors, Logic, Search, or Time. Specifies the region of an acquisition in which to take measurements. Gating can be set to Global (affects all measurements set to Global) or Local (all measurements can have a unique Time gate setting; only one Local gate is available for Screen, Cursors, Logic, and Search actions).		
Measurement plots	Histogram, Time Trend, Spectrum, Eye Diagram (TIE measurement only), Phase Noise (Phase Noise measurement only)		
Measurement limits	Pass/fail testing for user-definable limits on measurement values. Act on event for measurement value failures include Save Screen Capture, Save Waveform, System Request (SRQ), and Stop Acquisitions		

ter analysis (option 6-DJA) adds	the following:
Measurements	Jitter Summary, TJ@BER, RJ- δδ, DJ- δδ, PJ, RJ, DJ, DDJ, DCD, SRJ, J2, J9, NPJ, F/2, F/4, F/8, Eye Height, Eye Height@BER, Eye Width, Eye Width@BER, Eye High, Eye Low, Q-Factor, Bit High, Bit Low, Bit Amplitude, DC Common Mode, AC Common Mode (Pk-Pk), Differential Crossover, T/nT Ratio, SSC Freq Dev, SSC Modulation Rate, SSC Slew Rate, Pattern Length, and Inter-Symbol Interference (ISI)
Measurement plots	Eye Diagram and Jitter Bathtub
	Fast eye rendering: Shows the Unit Intervals (UIs) that define the boundaries of the eye along with a user specified number of surrounding UIs for added visual context
	Complete eye rendering: Shows all valid Unit Intervals (UIs)
Measurement limits	Pass/fail testing for user-definable limits on measurement values. Act on event for measurement value failures include Save Screen Capture, Save Waveform, System Request (SRQ), and Stop Acquisitions
Eye diagram mask testing	Automated mask pass/fail testing with mask autofit

Power analysis (option 6-PWR) adds the following:

Measurements Input Analysis (Frequency, V_{RMS}, I_{RMS}, voltage and current Crest Factors, True Power, Apparent Power, Reactive Power, Power

Factor, Phase Angle, Harmonics, Inrush Current, Input Capacitance)

Amplitude Analysis (Cycle Amplitude, Cycle Top, Cycle Base, Cycle Maximum, Cycle Minimum, Cycle Peak-to-Peak)

Timing Analysis (Period, Frequency, Negative Duty Cycle, Positive Duty Cycle, Negative Pulse Width, Positive Pulse Width)

Switching Analysis (Switching Loss, dv/dt, di/dt, Safe Operating Area, R_{DSon})

Output Analysis (Line Ripple, Switching Ripple, Efficiency, Turn-on Time, Turn-off Time)

Magnetic Analysis (Inductance, I vs. Intg(V), Magnetic Loss, Magnetic Property)

Frequency Response Analysis (Control Loop Response Bode Plot, Power Supply Rejection Ratio, Impedance)

Measurement Plots Harmonics Bar Graph, Switching Loss Trajectory Plot, and Safe Operating Area

Measurement limits Pass/fail testing for user-definable limits on measurement values. Act on event for measurement value failures include Save

Screen Capture, Save Waveform, System Request (SRQ), and Stop Acquisitions

Inverter Motor Drive Analysis (option 6-IMDA) adds the following:

Measurements Input Analysis (Power Quality, Harmonics, Input Voltage, Input Current, and Input Power)

Ripple analysis (Line Ripple and Switching Ripple)
Output analysis (Phasor Diagram and Efficiency)
DQ0 analysis (DQ0) Requires option 6-IMDA-DQ0

Measurement plots Harmonics Bar Graph and Phasor Diagram

Invertor Motor Drive Analysis Mechanical Measurements (option 6-IMDA-MECH: requires option 6-IMDA) adds the following:

Sensors supported Hall sensors, QEI (Quadrature Encoder Interface)

Measurements Electrical Analysis (Power Quality, Harmonics, Ripple, DQ0, and Efficiency)

Mechanical Analysis (Speed, Acceleration, Angle (QEI method), Direction, and Torque)

Measurement plots Time Trend, Acquisition Trend, Phasor Diagram, Harmonics Bar Graph, DQ0, and Histogram (speed distribution)

Digital power management (option 6-DPM) adds the following:

Measurements Ripple Analysis (Ripple)

Transient Analysis (Overshoot, Undershoot, Turn On Overshoot, DC Rail Voltage)

Power Sequence Analysis (Turn-on, Turn-off)

Jitter Analysis (TIE, PJ, RJ, DJ, Eye Height, Eye Width, Eye High, Eye Low)

PI/SI Analysis (PSIJ)

DDR3/LPDDR3 memory debug and analysis option (6-DBDDR3) adds the following:

Measurements Amplitude Measurements (AOS, AUS, Vix(ac), AOS Per tCK, AUS Per tCK, AOS Per UI, AUS Per UI)

Time Measurements (tRPRE, tWPRE, tPST, Hold Diff, Setup Diff, tCH(avg), tCK(avg), tCL(avg), tCH(abs), tJIT(duty),

tJIT(per), tJIT(cc), tERR(n), tERR(m-n), tDQSCK, tCMD-CMD, tCKSRE, tCKSRX)

LVDS debug and analysis option (option 6-DBLVDS) adds the following:

49

Peak-to-Peak)

Jitter Test (AC Timing, Clock Data Setup Time, Clock Data Hold Time, Eye Diagram (TIE), TJ@BER, DJ Delta, RJ Delta, DDJ,

De-Emphasis Level)

Clock Lane Measurements Generic Test (Frequency, Period, Duty Cycle, Rise Time, Fall Time, Clock Intra Skew (PN), Clock Peak-to-Peak)

Jitter Test (TIE, DJ, RJ)

SSC On (Mod Rate, Frequency Deviation Mean)

Waveform math			
Number of math waveforms	Unlimited		
Arithmetic	Add, subtract, multiply, and divide waveforms and scalars		
Algebraic expressions	Define extensive algebraic expressions including waveforms, scalars, user-adjustable variables, and results of parame measurements. Perform math on math using complex equations. For example (Integral (CH1 - Mean(CH1)) X 1.414 X VAR1)		
Math functions	Invert, Integrate, Differentiate, Square Root, Exponential, Log 10, Log e, Abs, Ceiling, Floor, Min, Max, Degrees, Radians Sin, Cos, Tan, ASin, ACos, and ATan		
Relational	Boolean result of comparison >, <, ≥, ≤, =, and ≠		
Logic	AND, OR, NAND, NOR, XOR, and EQV		
Filtering function (standard)	Loading of user-definable filters. Users specify a file containing the coefficients of the filter.		
Filtering function (option 6-UDFL			
Filter types	Low pass, High pass, Band pass, Band stop, All pass, Hilbert, Differentiator, and Custom		
Filter response types	Butterworth, Chebyshev I, Chebyshev II, Elliptical, Gaussian, and Bessel-Thomson		
FFT functions	Spectral Magnitude and Phase, and Real and Imaginary Spectra		
FFT vertical units	Magnitude: Linear and Log (dBm)		
	Phase: Degrees, Radians, and Group Delay		
FFT window functions	Hanning, Rectangular, Hamming, Blackman-Harris, Flattop2, Gaussian, Kaiser-Bessel, and TekExp		
Spectrum View			
Center Frequency	Limited by instrument analog bandwidth		
Span	74.5 Hz – 1.25 GHz (Standard)		

74.5 Hz - 2 GHz (with option 6-SV-BW-1; 2 GHz max span available on up to 4 channels; 1 GHz max span on >4 channels)

Coarse adjustment in a 1-2-5 sequence

Note: Enabling Spectrum View halves the maximum sample rate of time domain acquisition. When spans are ≥ 1.25 GHz, maximum sample rate is halved again.

RF Measurements Channel Power (CHP), Adjacent Channel Power Ratio (ACPR), and Occupied Bandwidth (OBW) measurements on Spectrum View trace data and display

RF vs. Time Traces Magnitude vs. time, Frequency vs. time, Phase vs. time (with option 6-SV-RFVT)

RF vs. Time Trigger Edge, pulse width, and timeout trigger on RF Magnitude vs. Time and RF Frequency vs. Time (with option 6-SV-RFVT)

RF Frequency vs. Time vs. Amplitude display with frequency on x-axis, time on y-axis, and power level indicated by **Spectrograms** variations in color (with option 6-SV-RFVT)

Resolution Bandwidth (RBW) 93 µHz to 62.5 MHz 93 µHz to 100 MHz (with option 6-SV-BW-1)

IQ capture The data is stored as in-phase and quadrature (I&Q) samples and precise synchronization is maintained between the time domain data and the I&Q data.

When RF vs. Time traces are activated (with option 6-SV-RFVT), IQ data can be captured and exported to file for more analysis within 3rd party applications.

The max acquisition time varies with span and sample rate. At 25 GS/s and 2 GHz span, the max acquisition time is 0.086 seconds. For 1 GHz span, the max acquisition time is 0.172 seconds. For 40 MHz span, the max acquisition time is 2.749 seconds. For 1 MHz span, the max acquisition time is 87.961 seconds.

Window types and factors

Window type	Factor
Blackman-Harris	1.90
Flat-Top 2	3.77
Hamming	1.30
Hanning	1.44
Kaiser-Bessel	2.23
Rectangular	0.89

Spectrum Time	FFT Window Factor / RBW
Reference level	Reference level is automatically set by the analog channel Volts/div setting Setting range: -42 dBm to +44 dBm
Vertical Position	-100 divs to +100 divs
Vertical units	dBm, dBμW, dBmV, dBμV, dBmA, dBμA

Vertical scaling	Linear, Log		
Horizontal scaling	Linear, Log		
Multi-channel spectrum analysis	Each FlexChannel input can be configured with Spectrum View, RF vs. Time traces (with option RFVT), and Spectrogram (with option RFVT). Multiple RF measurements can be performed simultaneously across channels. Spectrum Time and Center Frequency settings can be unlocked and moved independently from each other across channels. All Spectrum View channels must share the same Span, Resolution Bandwidth and Window Type.		
Search			
Number of searches	Unlimited		
Search types	Search through long records to find all occurrences of user specified criteria including edges, pulse widths, timeouts, runt pulses, window violations, logic patterns, setup & hold violations, rise/fall times, and bus protocol events. Search results can be viewed in the Waveform View or in the Results table.		
Save			
Save	Save files directly to the oscilloscope or USB media, to a remote network drive, or to your TekDrive collaboration workspace.		
Waveform type	Tektronix Waveform Data (.wfm), Comma Separated Values (.csv), MATLAB (.mat)		
Waveform gating	Cursors, Screen, Resample (save every nth sample)		
Screen capture type	Portable Network Graphic (*.png), 24-bit Bitmap (*.bmp), JPEG (*.jpg)		
Setup type	Tektronix Setup (.set)		
Report type	Adobe Portable Documents (.pdf), Single File web Pages (.mht)		
Session type	Tektronix Session Setup (.tss)		
Display			
Display type	15.6 in. (395 mm) liquid-crystal TFT color display		
Display resolution	1,920 horizontal × 1,080 vertical pixels (High Definition)		
Display modes	Overlay: traditional oscilloscope display where traces overlay each other		
	Stacked: display mode where each waveform is placed in its own slice and can take advantage of the full ADC range while still being visually separated from other waveforms. Groups of channels can also be overlaid within a slice to simplify visual comparison of signals.		
Zoom	Horizontal and vertical zooming is supported in all waveform and plot views.		

Interpolation	Sin(x)/x and Linear
Waveform styles	Vectors, dots, variable persistence, and infinite persistence
Graticules	Movable and fixed graticules, selectable between Grid, Time, Full, and None
Color palettes	Normal and inverted for screen captures
	Individual waveform colors are user-selectable
Fonts	Font size is user selectable from 12 to 20 (default is 15)
Format	YT, XY, and XYZ
Local Language User Interface	English, Japanese, Simplified Chinese, Traditional Chinese, French, German, Italian, Spanish, Portuguese, Russian, Korean
Local Language Help	English, Japanese, Simplified Chinese

Arbitrary-Function Generator (optional)

Modes of operation

Off, Continuous, Burst

Function types

Arbitrary, sine, square, pulse, ramp, triangle, DC level, Gaussian, Lorentz, exponential rise/fall, sin(x)/x, random noise, Haversine, Cardiac

Amplitude range

Values are peak-to-peak voltages

Waveform	50 Ω	1 ΜΩ
Arbitrary	10 mV to 2.5 V	20 mV to 5 V
Sine	10 mV to 2.5 V	20 mV to 5 V
Square	10 mV to 2.5 V	20 mV to 5 V
Pulse	10 mV to 2.5 V	20 mV to 5 V
Ramp	10 mV to 2.5 V	20 mV to 5 V
Triangle	10 mV to 2.5 V	20 mV to 5 V
Gaussian	10 mV to 1.25 V	20 mV to 2.5 V
Lorentz	10 mV to 1.2 V	20 mV to 2.4 V
Exponential Rise	10 mV to 1.25 V	20 mV to 2.5 V
Exponential Fall	10 mV to 1.25 V	20 mV to 2.5 V
Sine(x)/x	10 mV to 1.5 V	20 mV to 3.0 V
Random Noise	10 mV to 2.5 V	20 mV to 5 V
Haversine	10 mV to 1.25 V	20 mV to 2.5 V
Cardiac	10 mV to 2.5 V	20 mV to 5 V

Sine waveform

Frequency range 0.1 Hz to 50 MHz

Frequency setting resolution 0.1 Hz

Frequency accuracy 130 ppm (frequency ≤ 10 kHz), 50 ppm (frequency > 10 kHz)

This is for Sine, Ramp, Square and Pulse waveforms only.

Amplitude range 20 mV_{pp} to 5 V_{pp} into Hi-Z; 10 mV_{pp} to 2.5 V_{pp} into 50 Ω

Amplitude flatness, typical ±0.5 dB (relative to 1kHz level) at 30 MHz

±1.0 dB (relative to 1kHz level) at 50 MHz

Total harmonic distortion,

typical

1% for amplitude ≥ 200 mVpp into 50 Ω load

2.5% for amplitude > 50 mV AND < 200 mVpp into 50 Ω load

Spurious free dynamic range,

typical

40 dB ($V_{pp} \ge 0.1 \text{ V}$); 30 dB ($V_{pp} \ge 0.02 \text{ V}$), 50 Ω load

Square and pulse waveform

Frequency range 0.1 Hz to 25 MHz

Frequency setting resolution 0.1 Hz

Frequency accuracy 130 ppm (frequency \leq 10 kHz), 50 ppm (frequency > 10 kHz)

Amplitude range 20 mV_{pp} to 5 V_{pp} into Hi-Z; 10 mV_{pp} to 2.5 V_{pp} into 50 Ω

Duty cycle range 10% - 90% or 10 ns minimum pulse, whichever is larger

Minimum pulse time applies to both on and off time, so maximum duty cycle will reduce at higher frequencies to maintain 10 ns

off time

Duty cycle resolution 0.1%

Minimum pulse width, typical

10 ns. This is the minimum time for either on or off duration.

Rise/Fall time, typical

5 ns, 10% - 90%

Pulse width resolution

100 ps

Overshoot, typical

< 6% for signal steps greater than 100 mV_{pp}

This applies to overshoot of the positive-going transition (+overshoot) and of the negative-going (-overshoot) transition

Asymmetry, typical

±1% ±5 ns, at 50% duty cycle

Jitter, typical

< 60 ps TIE_{RMS} , \geq 100 mV_{pp} amplitude, 40%-60% duty cycle

Square and pulse waveforms, 5 GHz measurement BW.

Ramp and triangle waveform

Frequency range 0.1 Hz to 500 kHz

Frequency setting resolution 0.1 Hz

Frequency accuracy 130 ppm (frequency \leq 10 kHz), 50 ppm (frequency > 10 kHz) Amplitude range 20 mV_{pp} to 5 V_{pp} into Hi-Z; 10 mV_{pp} to 2.5 V_{pp} into 50 Ω

Variable symmetry 0% - 100% Symmetry resolution 0.1%

DC level range ±2.5 V into Hi-Z

 $\pm 1.25~V$ into 50 Ω

Random noise amplitude range 20 mV $_{pp}$ to 5 V $_{pp}$ into Hi-Z

10 mV $_{pp}$ to 2.5 V_{pp} into 50 Ω

Sin(x)/x

Maximum frequency 2 MHz

Gaussian pulse, Haversine, and Lorentz pulse

5 MHz Maximum frequency

Lorentz pulse

0.1 Hz to 5 MHz Frequency range

Amplitude range 20 mV $_{pp}$ to 2.4 V_{pp} into Hi-Z

10 mV_{pp} to 1.2 V_{pp} into 50 Ω

Cardiac

Frequency range 0.1 Hz to 500 kHz

Amplitude range 20 mV $_{pp}$ to 5 V $_{pp}$ into Hi-Z

10 mV $_{pp}$ to 2.5 V_{pp} into 50 Ω

Arbitrary

Memory depth 1 to 128 k

Amplitude range 20 mV $_{pp}$ to 5 V_{pp} into Hi-Z

10 mV $_{pp}$ to 2.5 V_{pp} into 50 Ω

0.1 Hz to 25 MHz Repetition rate

Sample rate 250 MS/s

 \pm [(1.5% of peak-to-peak amplitude setting) + (1.5% of absolute DC offset setting) + 1 mV] (frequency = 1 kHz) Signal amplitude accuracy

Signal amplitude resolution 1 mV (Hi-Z)

500 μV (50 Ω)

DC offset range ±2.5 V into Hi-Z

 ± 1.25 V into 50 Ω

DC offset resolution 1 mV (Hi-Z)

500	μV ((50	Ω)

DC offset accuracy $\pm [(1.5\% \text{ of absolute offset voltage setting}) + 1 \text{ mV}]$

Add 3 mV of uncertainty per 10 °C change from 25 °C ambient

Digital volt meter (DVM)

Measurement types DC, AC_{RMS}+DC, AC_{RMS}, Trigger frequency count

Voltage resolution 4 digits

Voltage accuracy

DC: $\pm ((1.5\% * |reading - offset - position|) + (0.5\% * |(offset - position)|) + (0.1 * Volts/div))$

De-rated at 0.100%/°C of |reading - offset - position| above 30 °C

Signal ± 5 divisions from screen center

AC: $\pm 3\%$ (40 Hz to 1 kHz) with no harmonic content outside 40 Hz to 1 kHz range

AC, typical: ± 2% (20 Hz to 10 kHz)

For AC measurements, the input channel vertical settings must allow the V_{PP} input signal to cover between 4 and 10 divisions

and must be fully visible on the screen

Trigger frequency counter

Resolution 8-digits

Accuracy ±(1 count + time base accuracy * input frequency)

The signal must be at least 8 mV_{pp} or 2 div, whichever is greater.

Input frequency 10 Hz to maximum bandwidth of the analog channel

The signal must be at least 8 mV $_{pp}$ or 2 div, whichever is greater.

Processor system

Host processor Intel Core i5-8400H @2.5 GHz, 64-bit, quad core processor, 16 GB System RAM

Operating system Default instrument: Closed Embedded OS

Instrument with option 6-WIN installed: Microsoft Windows 10

Standard SSD with Embedded OS ≥ 250 GB removable solid state drive

Solid State Drive (SSD) with Microsoft Windows 10 OS (option 6-WIN) ≥ 500 GB SSD. Form factor is a 2.5-inch SSD with a SATA-3 interface. This drive is customer installable and includes the

Microsoft Windows 10 Enterprise IoT 2016 LTSB (64-bit) operating system

Input-Output ports

DisplayPort connector A 20-pin DisplayPort connector; connect to show the oscilloscope display on an external monitor or projector

DVI connector A 29-pin DVI-I connector; connect to show the oscilloscope display on an external monitor or projector

VGA DB-15 female connector; connect to show the oscilloscope display on an external monitor or projector

Probe compensator signal, typical

Connection: Connectors are located on the lower front right of the instrument

0 to 2.5 V Amplitude: 1 kHz Frequency: $1 k\Omega$ Source impedance:

External reference input

The time-base system can phase lock to an external 10 MHz reference signal .

There are two ranges for the reference clock.

The instrument can accept a high-accuracy reference clock of 10 MHz ±2 ppm or a lower-accuracy reference clock of 10

MHz ±1 kppm.

Front panel USB Host ports: Two USB 2.0 Hi-Speed ports, one USB 3.0 SuperSpeed port **USB** interface (Host, Device ports)

> Rear panel USB Host ports: Two USB 2.0 Hi-Speed ports, two USB 3.0 SuperSpeed ports Rear panel USB Device port: One USB 3.0 SuperSpeed Device port providing USBTMC support

Ethernet interface 10/100/1000 Mb/s

Rear-panel BNC connector. Output can be configured to provide a positive or negative pulse out when the oscilloscope **Auxiliary output**

triggers, the internal oscilloscope reference clock out, or an AFG sync pulse

Characteristic	Limits
Vout (HI)	≥ 2.5 V open circuit; ≥ 1.0 V into a 50 Ω load to ground
Vout (LO)	≤ 0.7 V into a load of ≤ 4 mA; ≤0.25 V into a 50 Ω load to ground

Kensington-style lock Rear-panel security slot connects to standard Kensington-style lock

LXI Class: LXI Core 2011

Version: 1.5

Power source

Power

Power consumption 500 Watts maximum

Source voltage 100 - 240 V ±10% at 50 Hz to 60 Hz

115 V ±10% at 400 Hz

Physical characteristics

Dimensions Height: 12.2 in (309 mm), feet folded in, handle to back

Height: 14.6 in (371 mm) feet folded in, handle up Width: 17.9 in (454 mm) from handle hub to handle hub

Depth: 8.0 in (205 mm) from back of feet to front of knobs, handle up

Depth: 11.7 in (297.2 mm) feet folded in, handle to the back

Weight < 29.8 lbs (13.52 kg)

Cooling The clearance requirement for adequate cooling is 2.0 in (50.8 mm) on the right side of the instrument (when viewed from

the front) and on the rear of the instrument

Rackmount configuration 7U (with optional RM5 Rackmount Kit)

Environmental specifications

Temperature

Operating +0 °C to +50 °C (32 °F to 122 °F) Non-operating -20 °C to +60 °C (-4 °F to 140 °F)

Humidity

Operating 5% to 90% relative humidity (% RH) at up to +40 °C

5% to 55% RH above +40 °C up to +50 °C, noncondensing

Non-operating 5% to 90% relative humidity (% RH) at up to +60 °C, noncondensing

Altitude

Operating Up to 3,000 meters (9,843 feet)

Non-operating Up to 12,000 meters (39,370 feet)

Temperature

Operating +0 °C to +50 °C (32 °F to 122 °F) Non-operating -20 °C to +60 °C (-4 °F to 140 °F)

Humidity

Operating 5% to 90% relative humidity (% RH) at up to +40 °C

5% to 55% RH above +40 °C up to +50 °C, noncondensing

Non-operating 5% to 90% relative humidity (% RH) at up to +60 °C, noncondensing

Altitude

Operating Up to 3,000 meters (9,843 feet)

Non-operating Up to 12,000 meters (39,370 feet)

58

EMC, Environmental, and Safety

Safety certification US NRTL Listed - UL61010-1 and UL61010-2-030

Canadian Certification - CAN/CSA-C22.2 No. 61010.1 and CAN/CSA-C22.2 No 61010.2.030

EU Compliance - Low Voltage Directive 2014-35-EU and EN61010-1.

International Compliance - IEC 61010-1 and IEC61010-2-030

Regulatory CE marked for the European Union and UL approved for the USA and Canada

RoHS compliant

Software

IVI driver Provides a standard instrument programming interface for common applications such as LabVIEW, LabWindows/CVI,

Microsoft .NET, and MATLAB. Compatible with Python, C/C++/C# and many other languages through VISA.

e*Scope® Enables control of the oscilloscope over a network connection through a standard web browser. Simply enter the IP address

or network name of the oscilloscope and a web page will be served to the browser. Transfer and save settings, waveforms, measurements, and screen images or make live control changes to settings on the oscilloscope directly from the web browser.

Optionally configure e*Scope authentication to password protect access to control and view the oscilloscope.

TekDriveUpload, store, organize, search, download, and share any file type from any connected device. TekDrive is natively integrated

into the instrument for seamless sharing and recalling of files - no USB stick is required. Analyze and explore standard files

like .wfm, .isf, .tss, and .csv, directly in a browser. Visit www.tek.com/software/tekdrive to learn more.

SignalVu-PC Advanced vector signal analysis software that can run directly on your 6 Series MSO or on a separate Windows PC. Requires

option 6-SV-RFVT installed on the 6 Series MSO. Requires Connect license (CONxx-SVPC) installed on SignalVu-PC, xx is NL

for Node Locked license or FL for Floating License.

LXI Web interfaceConnect to the oscilloscope through a standard Web browser by simply entering the oscilloscope's IP address or network

name in the address bar of the browser. The Web interface enables viewing of instrument status and configuration, status and

modification of network settings, and instrument control through the e*Scope web-based remote control.

Programming Examples Programming with the 4/5/6 Series platforms has never been easier. With a programmers manual and a GitHub site you have

many commands and examples to help you get started remotely automating your instrument. See https://github.com/tektronix/

programmatic-control-examples.

Ordering information

Use the following steps to select the appropriate instrument and options for your measurement needs.

Step 1

Start by selecting the model.

Model	Number of FlexChannels
MSO64B	4
MSO66B	6
MSO68B	8

Each model includes

One TPP1000 1 GHz probe per FlexChannel

Installation and safety manual

Embedded Help

Front cover with integrated accessory pouch

Power cord

Calibration certificate documenting traceability to National Metrology Institute(s) and ISO9001/ISO17025 quality system

registration

One-year warranty covering all parts and labor on the instrument.

One-year warranty covering all parts and labor on included probes

Step 2

Configure your oscilloscope by selecting the analog channel bandwidth you need

Choose the bandwidth you need today by choosing one of these bandwidth options. You can upgrade it later by purchasing an upgrade option.

Bandwidth Option	Bandwidth
6-BW-1000	1 GHz
6-BW-2500	2.5 GHz
6-BW-4000	4 GHz
6-BW-6000	6 GHz
6-BW-8000	8 GHz
6-BW-10000	10 GHz

Note: For instruments of 4, 6, 8 or 10 GHz bandwidth, consider a BNC-to-SMA adapter to optimize a high bandwidth connection to the oscilloscope. Tektronix part number 103-0503-XX.

Add instrument functionality by adding an option bundle

Three classes of option bundles are offered (Starter, Pro, Ultimate), providing a range of options depending on your budget and application needs. For detailed information on the current contents of each bundle, please visit our website and view the software bundle brochure at www.tek.com/document/brochure/software-bundles-for-the-4-5-and-6-series-msooscilloscopes.

- 1. Starter bundle offers the most common serial bus decoding, protocol analysis, power measurements and analysis, and hardware enhancing options bundled together.
- 2. Pro bundles are application-specific (Serial trigger and decode, Power Integrity, Signal Integrity, Automotive, Automated Compliance Test, Military Government Aerospace), and include all options from the Starter bundle.
- 3. Ultimate bundle includes all options from the Starter bundle in addition to the all options from all Pro bundles.

1 Year license	Perpetual license	Bundle description
6-STARTER-1Y	6-STARTER-PER	Includes I2C, SPI, RS-232/422/UART serial trigger and analysis, AFG (Arbitrary/Function Generator), and power measurements and analysis
6-PRO-SERIAL-1Y	6-PRO-SERIAL-PER	Includes 6-STARTER plus 250 MS/ch record length, and additional select serial analysis options
6-PRO-POWER-1Y	6-PRO-POWER-PER	Includes 6-STARTER plus 250 MS/ch record length, and select power analysis options
6-PRO-SIGNAL-1Y 6	6-PRO-SIGNAL-PER	Includes 6-STARTER plus 250 MS/ch record length, advanced Jitter, and select analysis options
6-PRO-COMPL-1Y ⁶	6-PRO-COMPL-PER	Includes 6-STARTER plus 250 MS/ch record length, advanced Jitter, and select automated compliance test options
6-PRO-AUTO-1Y ⁶	6-PRO-AUTO-PER	Includes 6-STARTER plus 250 MS/ch record length, advanced Jitter and select automotive analysis options
6-PRO-MILGOV-1Y	6-PRO-MILGOV-PER	Includes 6-STARTER plus 250 MS/ch record length, advanced Jitter, mask test, and select serial analysis options
6-ULTIMATE-1Y	6-ULTIMATE-PER	Includes 6-STARTER, all 6-PRO bundle options plus 1 GS/ch record length, RF vs. Time traces, triggers, Spectrograms, and IQ capture, extended Spectrum View capture bandwidth, and video trigger options

Each purchased bundle has two duration options:

- A 1-year subscription includes all features and free upgrades for the purchased bundle for one year; after which time the features are disabled. Additional 1-year subscription can be purchased for the selected bundle.
- A perpetual subscription enables all features for the purchased bundle permanently. A perpetual subscription includes 1-year of free upgrades to the bundle feature set. After the year, the feature set is frozen to those enabled by the last update made.

Perpetual bundles can continue to receive upgrades following the 1 year activation period with the purchase of a maintenance license. Maintenance license information can be found in the maintenance license table below and must be purchased for an existing Starter, Pro, or Ultimate bundle.

Maintenance license	Description
6-STARTER-MNT-1Y	Includes Perpetual Starter Bundle updates for 1 Year on 6 Series MSO
6-PRO-MNT-1Y	Includes Perpetual Pro Bundle updates for 1 Year on 6 Series MSO
Table continued	<u> </u>

⁶ This bundle requires option 6-WIN Windows 10 SSD

Maintenance license	Description
6-ULTIMATE-MNT-1Y	Includes Perpetual Ultimate Bundle updates for 1 Year on 6 Series MSO

Add instrument functionality

Instrument functionality can be ordered with the instrument or later as an upgrade kit.

Instrument option	Built-in functionality
6-RL-1	Extend record length from 62.5 Mpoints/channel to 125 Mpoints/channel
6-RL-2	Extend record length from 62.5 Mpts/channel to 250 Mpts/channel
6-RL-3	Extend record length from 62.5 Mpoints/channel to 500 Mpoints/channel
6-RL-4	Extend record length from 62.5 Mpoints/channel to 1 Gpoints/channel
6-AFG	Add Arbitrary/Function Generator
6-WIN	Add removable SSD with Microsoft Windows 10 operating system license

Step 5

Add optional protocol triggering, decode, and search capabilities

Choose the protocol support you need today by choosing from these analysis options. You can upgrade later by purchasing an upgrade kit.

Instrument option	Protocols supported
6-RFNFC	ISO/IEC 15693, 14443A, 14443B, and FeliCa (decode and search only)
6-SRAERO	Aerospace (MIL-STD-1553, ARINC 429)
6-SRAUDIO	Audio (I ² S, LJ, RJ, TDM)
6-SRAUTO	Automotive (CAN, CAN FD, CAN XL, LIN, FlexRay, and CAN symbolic decoding)
6-SRAUTOEN1	100Base-T1 and 10BASE-T1S Automotive Ethernet serial analysis
6-SRAUTOSEN	Automotive sensor (SENT)
6-SRCOMP	Computer (RS-232/422/485/UART)
6-SRCPHY	MIPI C-PHY Vx.x (DSI-2, CSI-2 decode and search only)
6-SRCXPI	CXPI (decode and search only)
6-SRDPHY	MIPI D-PHY (DSI-1, CSI-2 decode and search only)
6-SREMBD	Embedded (I ² C, SPI)
6-SRENET	Ethernet (10BASE-T, 100BASE-TX)
6-SRESPI	eSPI (decode and search only)
6-SRETHERCAT	EtherCAT (decode and search only)
6-SR8B10B	8B/10B (decode and search only)
6-SRI3C	MIPI I3C
6-SRMANCH	Manchester (decode and search only)
6-SRMDIO	MDIO (decode and search only)
6-SRNRZ	NRZ (decode and search only)
Table continued	

Instrument option	Protocols supported
6-SRONEWIRE	One wire (1-Wire decode and search only)
6-SRPCIE321	PCle Gen1, Gen2, Gen3 (decode and search only)
6-SRPM	Power Management (SPMI)
6-SRPSI5	PSI5 (decode and search only)
6-SRSDLC	Synchronous Data Link Control Protocol Decode & Search
6-SRSMBUS	SMBus (decode and search only)
6-SRSPACEWIRE	Spacewire (decode and search only)
6-SRSVID	SVID
6-SRUSB2	USB (USB2.0 LS, FS, HS)
6-SREUSB2	eUSB2.0 (decode and search only)
6-SRUSB3	USB 3.0, USB 3.1 Gen1, USB 3.2 Gen1 (decode and search only)

Differential serial bus? Be sure to check Add analog probes and adapters for differential probes.

Add third party serial bus decode and analysis capabilities

Third-party applications are available that provide serial bus decode and analysis capabilities for use on the 6 Series B MSO. Use of the third-party applications require a Windows 10 SSD (option 6-WIN).

Serial bus	Third party contact information
Embedded Multi-media Controller (eMMC) memory	Prodigy Technovations (prodigytechno.com)
Quad Serial Peripheral Interface (QSPI) - 2 enhanced IO lines for SPI	
Secure Digital Input Output (SDIO)	

Step 6

testing

Add optional serial bus compliance Choose the serial compliance testing packages you need today by choosing from these options. You can upgrade later by purchasing an upgrade kit. All options in the table below require option 6-WIN (SSD with Microsoft Windows 10 operating system).

Instrument option	Serial buses supported
6-CMAUTOEN	Automotive Ethernet (100Base-T1, 1000Base-T1) automated compliance test solution.
	≥2 GHz bandwidth required for 1000BASE-T1
6-CMAUTOEN10	Automotive Ethernet (10BASE-T1S Short Reach) automated compliance test solution.
6-CMAUTOEN10G	Automotive Ethernet (MultiGBase-T1) automated compliance test solution. Requires option 6-DJA.
6-AUTOEN-BND	Automotive Ethernet Compliance, Signal Separation, PAM3 Analysis, 100Base-T1 Decode software (requires options 6-DJA and 6-WIN)
6-AUTOEN-SS	Automotive Ethernet Signal Separation
6-CMINDUEN10	Industrial Ethernet (10Base-T1L Long Reach) automated compliance test solution
6-CMCPHY20	MIPI C-PHY 2.0 Tx Test automated conformance test solution (requires option 6-DJA)
6-CMDPHY	MIPI D-PHY 1.2 automated compliance test solution
6-CMDPHY21	MIPI D-PHY 2.1 Tx Test automated conformance test solution (requires option 6-DJA)
Table continued	·

Instrument option	Serial buses supported
6-CMENET	Ethernet automated compliance test solution (10BASE-T/100BASE-T/1000BASE-T).
	≥1 GHz bandwidth required for 1000BASE-T
6-CMENETML	Multilane Ethernet (10Base-T, 100Base-T, 1000Base-T) automated compliance test solution
6-CMNBASET	2.5 and 5 GBASE-T Ethernet automated compliance test solution.
	2.5 GHz is recommended
6-CMXGBT	10 GBASE-T Ethernet automated compliance test solution.
	≥4 GHz is recommended
6-CMUSB2	USB2.0 automated compliance test solution.
	Requires TDSUSBF USB test fixture
	≥2 GHz bandwidth required for high-speed USB

Add optional memory analysis

Instrument option	Advanced analysis
6-DBDDR3	DDR3 and LPDDR3 Debug and Analysis
6-CMDDR3	DDR3 and LPDDR3 automated compliance test solution using TekExpress Automation Platform.
	Requires options 6-DBDDR3, 6-DJA and 6-WIN (SSD with Microsoft Windows 10 operating system).
	≥4 GHz required, 8 GHz recommended for testing of all DDR3 speeds.

Step 8

Add optional analysis capabilities

Instrument option	Advanced analysis
6-DBLVDS	TekExpress automated LVDS test solution (requires options 6-DJA and 6-WIN)
6-DJA	Advanced Jitter and Eye Analysis
6-DPM	Digital Power Management
6-IMDA ⁷	Inverter Motor Drive Analysis
6-IMDA-DQ0 ⁷	DQ0 feature for Inverter Motor Drive Analysis(requires option 6-IMDA)
6-IMDA-MEC ⁷	Mechanical measurements for Inverter Motor Drive Analysis (requires option 6-IMDA)
6-MTM	Mask and Limit testing
6-PAM3	PAM3 analysis (requires options 6-DJA and 6-WIN)
6-PS2 ⁸	Power solution bundle (6-PWR, THDP0200, TCP0030A, 067-1686-XX deskew fixture)
6-PWR ⁹	Power Measurement and Analysis
Table continued	

 $^{^7\,\,}$ This option is not compatible with MSO64B.

Instrument option	Advanced analysis
6-SV-BW-1	Increase Spectrum View Capture Bandwidth to 2 GHz
6-SV-RFVT	Spectrum View RF vs. Time traces, triggers, Spectrograms, and IQ capture
6-TDR	Time Domain Reflectometry
6-UDFLT	User Defined Filter Creation Tool
6-VID	NTSC, PAL, and SECAM video triggering
6-WBG-DPT	Wide Bandgap SiC/GaN Double Pulse Test Measurements and Analysis

Add vector signal analysis

SignalVu-PC is a stand-alone application that can be run on a 6 Series MSO or on a separate Windows PC to provide advanced vector signal analysis. In order to run SignalVu-PC on your 6 Series MSO, three options are required.

- 1. To run the application on the instrument, the Windows SSD (6-WIN) needs to be installed in the oscilloscope.
- 2. The Spectrum View RF versus time traces option (6-SV-RFVT) needs to be installed in the oscilloscope to enable I/Q data transfer.
- 3. The Connect (CONxx-SVPC) license needs to be installed in SignalVu-PC to enable base features of the application, which includes 16+ RF measurements and displays.

Step 9

Add digital probes

Each FlexChannel input can be configured as eight digital channels simply by connecting a TLP058 logic probe to a FlexChannel input..

For this instrument	Order	To add
MSO64B	1 to 4 TLP058 Probes	8 to 32 digital channels
MSO66B	1 to 6 TLP058 Probes	8 to 48 digital channels
MSO68B	1 to 8 TLP058 Probes	8 to 64 digital channels

Step 10

Add analog probes and adapters

Add additional recommended probes and adapters

Recommended Probe / Adapter	Description
TAP1500	1.5 GHz TekVPI® active single-ended voltage probe, ±8 V input voltage
TAP2500	2.5 GHz TekVPI® active single-ended voltage probe, ±4 V input voltage
TAP3500	3.5 GHz TekVPI® active single-ended voltage probe, ±4 V input voltage
TAP4000	4 GHz TekVPI® active single-ended voltage probe, ±4 V input voltage
TCP0020	20 A AC/DC TekVPI® current probe, 50 MHz BW
TCP0030A	30 A AC/DC TekVPI current probe, 120 MHz BW
TCP0150	150 A AC/DC TekVPI® current probe, 20 MHz BW
TCPA300	100 MHz Current Probe, Amplifier (Requires Probe); Recommend using TPA-BNC adapter to provide autoscaling.
Table continued	•

⁸ This option is not compatible with option 6-PWR.

Recommended Probe / Adapter	Description	
TCP312A	DC-100 MHz, AC/DC Current Probe; 30 Amp DC	
TRCP0300	30 MHz AC current probe, 250 mA to 300 A	
TRCP0600	30 MHz AC current probe, 500 mA to 600 A	
TRCP3000	16 MHz AC current probe, 500 mA to 3000 A	
TDP0500	500 MHz TekVPI® differential voltage probe, ±42 V differential input voltage	
TDP1000	1 GHz TekVPI® differential voltage probe, ±42 V differential input voltage	
TDP1500	1.5 GHz TekVPI® differential voltage probe, ±8.5 V differential input voltage	
TDP3500	3.5 GHz TekVPI® differential voltage probe, ±2 V differential input voltage	
TDP4000	4 GHz TekVPI® differential voltage probe, ±2 V differential input voltage	
TDP7704	4 GHz TriMode™ voltage probe	
TDP7706	6 GHz TriMode™ voltage probe	
TDP7708	8 GHz TriMode™ voltage probe	
TDP7710	10 GHz TriMode™ voltage probe	
THDP0100	±6 kV, 100 MHz TekVPI® high-voltage differential probe	
THDP0200	±1.5 kV, 200 MHz TekVPI® high-voltage differential probe	
TMDP0200	±750 V, 200 MHz TekVPI® high-voltage differential probe	
TPR1000	1 GHz, Single-Ended TekVPI® Power-Rail Probe; includes one TPR4KIT accessory kit	
TPR4000	4 GHz, Single-Ended TekVPI® Power-Rail Probe; includes one TPR4KIT accessory kit	
TIVP02	Isolated Probe; 200 MHz, ±5 V to ±2500 V depending on tip; 2 meter cable	
TIVP02L	Isolated Probe; 200 MHz, ±5 V to ±2500 V depending on tip; 10 meter cable	
TIVP05	Isolated Probe; 500 MHz, ±5 V to ±2500 V depending on tip; 2 meter cable	
TIVP05L	Isolated Probe; 500 MHz, ±5 V to ±2500 V depending on tip; 10 meter cable	
TIVP1	Isolated Probe; 1 GHz, ±5 V to ±2500 V depending on tip; 2 meter cable	
TIVP1L	Isolated Probe; 1 GHz, ±5 V to ±2500 V depending on tip; 10 meter cable	
TPP0502	500 MHz, 2X TekVPI® passive voltage probe, 12.7 pF input capacitance	
TPP0850	2.5 kV, 800 MHz, 50X TekVPI® passive high-voltage probe	
P6015A	20 kV, 75 MHz high-voltage passive probe	
TPA-BNC	TekVPI® to TekProbe™ BNC adapter (recommended for connecting your existing TekProbe probes to this instrument)	
103-0503-xx	BNC-to-SMA adapter; rated to 12 GHz	
TEK-DPG	TekVPI deskew pulse generator signal source	
067-1686-xx	Power measurement deskew and calibration fixture	

Looking for other probes? Check out the probe selector tool at www.tek.com/probes.

Step 11

Add accessories

Add traveling or mounting accessories

⁹ This option is not compatible with option 6-PS2.

Optional Accessory	Description
HC5	Hard carrying case
RM5	Rackmount kit
GPIB to Ethernet adapter	Order model 4865B (GPIB to Ethernet to Instrument Interface) directly from ICS Electronics www.icselect.com/gpib_instrument_intfc.html

Select power cord option

Power Cord Option	Description	
A0	North America power plug (115 V, 60 Hz)	
A1	Universal Euro power plug (220 V, 50 Hz)	
A2	United Kingdom power plug (240 V, 50 Hz)	
A3	Australia power plug (240 V, 50 Hz)	
A5	Switzerland power plug (220 V, 50 Hz)	
A6	Japan power plug (100 V, 50/60 Hz)	
A10	China power plug (50 Hz)	
A11	India power plug (50 Hz)	
A12	Brazil power plug (60 Hz)	
A99	No power cord	

Step 13

Protect your investment and your uptime with a service package for your instrument.

Optimize the lifetime value of your purchase and lower your total cost of ownership with a calibration and extended warranty plan for your instrument. Plans range from standard warranty extensions covering parts, labor, and 2-day shipping to Total Product Protection with repair or replacement coverage from wear and tear, accidental damage, ESD or EOS. See the table below for specific service options available on the 6 Series B MSO family of products. Compare factory service plans www.tek.com/en/services/factory-service-plans.

Additionally, Tektronix is a leading accredited calibration services provider for all brands of electronic test and measurement equipment, servicing more than 140,000 models from 9,000 manufacturers. With 100+ labs worldwide, Tektronix serves as a global partner, delivering tailored whole-site calibration programs with OEM quality at a market price. View whole site calibration service capabilities www.tek.com/en/services/calibration-services.

Add extended service and calibration options

Service Option	Description
T3	
R3	
C3	Calibration service for 3 years. Includes traceable calibration or functional verification where applicable, for recommended calibrations. Coverage includes the initial calibration plus 2 years of calibration coverage.
T5	
R5	
Table continued	

Service Option	Description
	Calibration service for 5 years. Includes traceable calibration or functional verification where applicable, for recommended calibrations. Coverage includes the initial calibration plus 4 years of calibration coverage.

Feature upgrades after purchase

Add feature upgrades in the future The 6 Series products offer many ways to easily add functionality after the initial purchase. Node-locked licenses permanently enable optional features on a single product. Floating licenses allow license-enabled options to be easily moved between compatible instruments.

Upgrade feature	Node-locked license upgrade	Floating license upgrade	Description
Add instrument functions	SUP6-AFG	SUP6-AFG-FL	Add arbitrary function generator
	SUP6-RL-1	SUP6-RL-1-FL	Extend record length from 62.5 Mpts to 125 Mpts/channel
	SUP6-RL-2	SUP6-RL-2-FL	Extend record length from 62.5 Mpts to 250 Mpts/channel
	SUP6-RL-3	SUP6-RL-3-FL	Extend record length from 62.5 Mpts to 500 Mpts/channel
	SUP6-RL-4	SUP6-RL-4-FL	Extend record length from 62.5 Mpts to 1 Gpts/channel
	SUP6-RL-1T2	SUP6-RL-1T2-FL	Extend record length from 125 Mpts to 250 Mpts/channel
	SUP6-RL-1T3	SUP6-RL-1T3-FL	Extend record length from 125 Mpts to 500 Mpts/channel
	SUP6-RL-1T4	SUP6-RL-1T4-FL	Extend record length from 125 Mpts to 1 Gpts/channel
	SUP6-RL-2T3	SUP6-RL-2T3-FL	Extend record length from 250 Mpts to 500 Mpts/channel
	SUP6-RL-2T4	SUP6-RL-2T4-FL	Extend record length from 250 Mpts to 1 Gpts/channel
	SUP6-RL-3T4	SUP6-RL-3T4-FL	Extend record length from 500 Mpts to 1 Gpts/channel

Upgrade feature	Node-locked license upgrade	Floating license upgrade	Description
Add protocol analysis	SUP6-RFNFC	SUP6-RFNFC-FL	ISO/IEC 15693, 14443A, 14443B, and FeliCa (decode and search only)
	SUP6-SRAERO	SUP6-SRAERO-FL	Aerospace serial triggering and analysis (MIL-STD-1553, ARINC 429)
	SUP6-SRAUDIO	SUP6-SRAUDIO-FL	Audio serial triggering and analysis (I ² S, LJ, RJ, TDM)
	SUP6-SRAUTO	SUP6-SRAUTO-FL	Automotive serial triggering and analysis (CAN, CAN FD, CAN XL, LIN, FlexRay, and CAN symbolic decoding)
	SUP6-SRAUTOEN1	SUP6-SRAUTOEN1-FL	100Base-T1 and 10BASE-T1S Automotive Ethernet serial analysis
	SUP6-SRAUTOSEN	SUP6-SRAUTOSEN-FL	Automotive sensor serial triggering and analysis (SENT)
	SUP6-SRCOMP	SUP6-SRCOMP-FL	Computer serial triggering and analysis (RS-232/422/485/UART)
	SUP6-SRCPHY	SUP6-SRCPHY-FL	MIPI C-PHY serial analysis (DSI-2, CSI-2)
	SUP6-SRCXPI	SUP6-SRCXPI-FL	CXPI serial decoding and analysis
	SUP6-SRDPHY	SUP6-SRDPHY-FL	MIPI D-PHY serial analysis (DSI-1, CSI-2)
	SUP6-SREMBD	SUP6-SREMBD-FL	Embedded serial triggering and analysis (I ² C, SPI)
	SUP6-SRENET	SUP6-SRENET-FL	Ethernet serial triggering and analysis (10Base-T, 100Base-TX)
	SUP6-SRESPI	SUP6-SRESPI-FL	eSPI serial decoding and analysis
	SUP6-SRETHERCAT	SUP6-SRETHERCAT-FL	EtherCAT serial decoding and analysis
	SUP6-CMXGBT	SUP6-CMXGBT-FL	10 GBASE-T Ethernet automated compliance test solution ≥4 GHz is recommended
	SUP6-SREUSB2	SUP6-SREUSB2-FL.	Embedded USB2 (eUSB2) serial decoding and analysis
	SUP6-SRI3C	SUP6-SRI3C-FL	MIPI I3C serial triggering and analysis
	SUP6-SRMANCH	SUP6-SRMANCH-FL	Manchester serial analysis
	SUP6-SRMDIO	SUP6-SRMDIO-FL	Management Data Input/Output (MDIO) serial decoding and analysis
	SUP6-SR8B10B	SUP6-SR8B10B-FL	8b/10b serial decoding and analysis
	SUP6-SRNRZ	SUP6-SRNRZ-FL	NRZ serial decoding and analysis
	SUP6-SRONEWIRE	SUP6-SRONEWIRE-FL	One wire (1-Wire) serial decoding and analysis
	SUP6-SRPCIE321	SUP6-SRPCIE321-FL	PCle Gen1, Gen2, Gen3 (decode and search only)
	SUP6-SRPM	SUP6-SRPM-FL	Power Management serial triggering and analysis (SPMI)
	SUP6-SRPSI5	SUP6-SRPSI5-FL	PSI5 serial decoding and analysis
	SUP6-SRSDLC	SUP6-SRSDLC-FL	Synchronous Data Link Control (SDLC) serial decoding and analysis
	SUP6-SRSMBUS	SUP6-SRSMBUS-FL	SMBus serial decoding and analysis
	SUP6-SRSPACEWIRE	SUP6-SRSPACEWIRE-FL	Spacewire serial analysis
	SUP6-SRSVID	SUP6-SRSVID-FL	Serial Voltage Identification (SVID) serial triggering and analysis
	SUP6-SRUSB2	SUP6-SRUSB2-FL	USB 2.0 serial bus triggering and analysis (1.5 Mbps, 12 Mbps, 480 Mbps)
ı	SUP6-SRUSB3	SUP6-SRUSB3-FL	USB 3.0, USB 3.1 Gen1, USB 3.2 Gen1 decode and analysis

tek.com 70

Upgrade feature	Node-locked license upgrade	Floating license upgrade	Description
Add serial compliance	SUP6-CMAUTOEN	SUP6-CMAUTOEN-FL	Automotive Ethernet automated compliance test solution (100BASE-T1 and 1000BASE-T1)
All serial compliance products require option 6-WIN (SSD	SUP6-CMAUTOEN10	SUP6-CMAUTOEN10-FL	Automotive Ethernet (10BASE-T1S Short Reach) automated compliance test solution
with Microsoft Windows 10 operating system)	SUP6-CMAUTOEN10G	SUP6-CMAUTOEN10G-FL	Automotive Ethernet (MultiGigBase-T1) automated compliance test solution (requires option 6-DJA)
	SUP6-AUTOEN-BND		Automotive Ethernet compliance, signal separation, PAM3 analysis, 100Base-T1 serial analysis (requires option 6-DJA)
	SUP6-AUTOEN-SS	SUP6-AUTOEN-SS-FL	Automotive Ethernet signal separation
	SUP6-CMINDUEN10	SUP6-CMINDUEN10-FL	Industrial Ethernet (10Base-T1L Long Reach) automated compliance test solution
	SUP6-CMCPHY20	SUP6-CMCPHY20-FL	MIPI C-PHY 2.0 Tx automated conformance test solution (requires option 6-DJA)
	SUP6-CMDPHY	SUP6-CMDPHY-FL	MIPI D-PHY 1.2 automated compliance test solution
	SUP6-CMDPHY21	SUP6-CMDPHY21-FL	MIPI D-PHY 2.1 Tx automated conformance test solution (requires option 6-DJA)
	SUP6-CMENET	SUP6-CMENET-FL	Ethernet automated compliance test solution (10BASE-T, 100BASE-T, and 1000BASE-T)
	SUP6-CMENETML	SUP6-CMENETML-FL	Multilane Ethernet automated compliance test solution (10Base T, 100Base-T, 1000Base-T) (requires option 6-CMENET)
	SUP6-CMNBASET	SUP6-CMNBASET-FL	2.5 and 5 GBASE-T Ethernet automated compliance test (2.5 GHz is recommended)
	SUP6-CMUSB2	SUP6-CMUSB2-FL	USB 2.0 automated compliance test solution
Add advanced analysis	SUP6-DBLVDS	SUP6-DBLVDS-FL	LVDS debug and analysis (requires options 6-DJA and 6-WIN)
	SUP6-DJA	SUP6-DJA-FL	Advanced jitter and eye analysis
	SUP6-DPM	SUP6-DPM-FL	Digital power management
	SUP6-MTM	SUP6-MTM-FL	Mask and Limit testing
	SUP6-PAM3	SUP6-PAM3-FL	PAM3 analysis (requires options 6-DJA and 6-WIN)
	SUP6-PS2	N/A	Power solution bundle (6-PWR, THDP0200, TCP0030A, and 067-1686-XX deskew fixture)
	SUP6-PWR	SUP6-PWR-FL	Advanced power measurements and analysis
	SUP6-SV-BW-1	SUP6-SV-BW-1-FL	Increase Spectrum View capture bandwidth to 2 GHz
	SUP6-SV-RFVT	SUP6-SV-RFVT-FL	Spectrum View RF vs. Time traces, triggers, Spectrograms, and IQ capture
	SUP6-UDFLT	SUP6-UDFLT-FL	User defined filter creation tool
	SUP6-VID	SUP6-VID-FL	NTSC, PAL, and SECAM video triggering
	SUP6-WBG-DPT	SUP6-WBG-DPT-FL	Wide Bandgap SiC/GaN Double Pulse Test Measurements and Analysis
	SUP6B-IMDA	SUP6B-IMDA-FL	Inverter Motor Drive analysis
	SUP6B-IMDA-DQ0	SUP6B-IMDA-DQ0-FL	DQ0 feature for Inverter Motor Drive analysis (requires option 6-IMDA)
	SUP6B-IMDA-MECH	SUP6B-IMDA-MECH-FL	Mechanical measurements for Inverter Motor Drive analysis (requires option 6-IMDA)
	SUP6-TDR	SUP6-TDR-FL	Time Domain Reflectometry

tek.com 71

Upgrade feature	Node-locked license upgrade	Floating license upgrade	Description
Add memory analysis	SUP6-DBDDR3	SUP6-DBDDR3-FL	DDR3 and LPDDR3 debug and analysis
	SUP6-CMDDR3	SUP6-CMDDR3-FL	DDR3 and LPDDR3 automated compliance test solution using TekExpress Automation Platform.
			Requires options 6-DBDDR3, 6-DJA and SSD with Microsoft WIndows 10 operating system.
			≥4 GHz required, 8 GHz recommended for testing of all DDR3 speeds.
Add digital voltmeter	N/A	N/A	Add digital voltmeter/trigger frequency counter
			(Free with product registration at www.tek.com/register6mso)

Upgrade feature	Upgrade	Description
Add expansion Windows operating system SSD	SUP6B-WIN	Add removable SSD with Windows 10 operating system
Add expansion embedded operating system SSD	SUP6B-LNX	Add removable SSD with embedded operating system

Bandwidth upgrades after purchase

Add bandwidth upgrades in the future

The analog bandwidth of 6 Series products can be upgraded after initial purchase. Bandwidth upgrades are purchased based on the number of FlexChannels, the current bandwidth and the desired bandwidth. All bandwidth upgrades can be performed in the field by installing a software license and a new front panel label.

Oscilloscope model owned	Bandwidth upgrade product	Upgrade option	Upgrade option description
MSO64B	SUP6B-BW4	6B-BW10T25-4	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 1 GHz to 2.5 GHz bandwidth on a (4) FlexChannel model
		6B-BW10T40-4	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 1 GHz to 4 GHz bandwidth on a (4) FlexChannel model
		6B-BW10T60-4	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 1 GHz to 6 GHz bandwidth on a (4) FlexChannel model
		6B-BW10T80-4	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 1 GHz to 8 GHz bandwidth on a (4) FlexChannel model
		6B-BW10T100-4	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 1 GHz to 10 GHz bandwidth on a (4) FlexChannel model
		6B-BW25T40-4	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 2.5 GHz to 4 GHz bandwidth on a (4) FlexChannel model
		6B-BW25T60-4	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 2.5 GHz to 6 GHz bandwidth on a (4) FlexChannel model
		6B-BW25T80-4	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 2.5 GHz to 8 GHz bandwidth on a (4) FlexChannel model
		6B-BW25T100-4	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 2.5 GHz to 10 GHz bandwidth on a (4) FlexChannel model
		6B-BW40T60-4	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 4 GHz to 6 GHz bandwidth on a (4) FlexChannel model
		6B-BW40T80-4	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 4 GHz to 8 GHz bandwidth on a (4) FlexChannel model
		6B-BW40T100-4	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 4 GHz to 10 GHz bandwidth on a (4) FlexChannel model
		6B-BW60T80-4	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 6 GHz to 8 GHz bandwidth on a (4) FlexChannel model
		6B-BW60T100-4	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 6 GHz to 10 GHz bandwidth on a (4) FlexChannel model
		6B-BW80T100-4	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 8 GHz to 10 GHz bandwidth on a (4) FlexChannel model

tek.com 73

Oscilloscope model owned	Bandwidth upgrade product	Upgrade option	Upgrade option description
MSO66B	SUP6B-BW6	6B-BW10T25-6	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 1 GHz to 2.5 GHz bandwidth on a (6) FlexChannel model
		6B-BW10T40-6	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 1 GHz to 4 GHz bandwidth on a (6) FlexChannel model
		6B- BW10T60-6	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 1 GHz to 6 GHz bandwidth on a (6) FlexChannel model
		6B-BW10T80-6	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 1 GHz to 8 GHz bandwidth on a (6) FlexChannel model
		6B-BW10T100-6	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 1 GHz to 10 GHz bandwidth on a (6) FlexChannel model
		6B-BW25T40-6	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 2.5 GHz to 4 GHz bandwidth on a (6) FlexChannel model
		6B-BW25T60-6	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 2.5 GHz to 6 GHz bandwidth on a (6) FlexChannel model
		6B-BW25T80-6	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 2.5 GHz to 8 GHz bandwidth on a (6) FlexChannel model
		6B-BW25T100-6	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 2.5 GHz to 10 GHz bandwidth on a (6) FlexChannel model
		6B-BW40T60-6	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 4 GHz to 6 GHz bandwidth on a (6) FlexChannel model
		6B-BW40T80-6	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 4 GHz to 8 GHz bandwidth on a (6) FlexChannel model
		6B-BW40T100-6	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 4 GHz to 10 GHz bandwidth on a (6) FlexChannel model
		6B-BW60T80-6	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 6 GHz to 8 GHz bandwidth on a (6) FlexChannel model
		6B-BW60T100-6	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 6 GHz to 10 GHz bandwidth on a (6) FlexChannel model
		6B-BW80T100-6	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 8 GHz to 10 GHz bandwidth on a (6) FlexChannel model

Oscilloscope model owned	Bandwidth upgrade product	Upgrade option	Upgrade option description
MSO68B	SUP6B-BW8	6B-BW10T25-8	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 1 GHz to 2.5 GHz bandwidth on a (8) FlexChannel model
		6B-BW10T40-8	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 1 GHz to 4 GHz bandwidth on a (8) FlexChannel model
		6B-BW10T60-8	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 1 GHz to 6 GHz bandwidth on a (8) FlexChannel model
		6B-BW10T80-8	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 1 GHz to 8 GHz bandwidth on a (8) FlexChannel model
		6B-BW10T100-8	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 1 GHz to 10 GHz bandwidth on a (8) FlexChannel model
		6B-BW25T40-8	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 2.5 GHz to 4 GHz bandwidth on a (8) FlexChannel model
		6B-BW25T60-8	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 2.5 GHz to 6 GHz bandwidth on a (8) FlexChannel model
		6B-BW25T80-8	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 2.5 GHz to 8 GHz bandwidth on a (8) FlexChannel model
		6B-BW25T100-8	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 2.5 GHz to 10 GHz bandwidth on a (8) FlexChannel model
		6B-BW40T60-8	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 4 GHz to 6 GHz bandwidth on a (8) FlexChannel model
		6B-BW40T80-8	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 4 GHz to 8 GHz bandwidth on a (8) FlexChannel model
		6B-BW40T100-8	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 4 GHz to 10 GHz bandwidth on a (8) FlexChannel model
		6B-BW60T80-8	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 6 GHz to 8 GHz bandwidth on a (8) FlexChannel model
		6B-BW60T100-8	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 6 GHz to 10 GHz bandwidth on a (8) FlexChannel model
		6B-BW80T100-8	License; Bandwidth upgrade for 6 Series B MSO; Upgrade from 8 GHz to 10 GHz bandwidth on a (8) FlexChannel model

Tektronix is ISO 14001:2015 and ISO 9001:2015 certified by DEKRA.

ASEAN / Australasia (65) 6356 3900 Belgium 00800 2255 4835" Central East Europe and the Baltics +41 52 675 3777 Finland +41 52 675 3777 Hong Kong 400 820 5835 Japan 81 (120) 441 046 Middle East, Asia, and North Africa +41 52 675 3777 People's Republic of China 400 820 5835 Republic of Korea +82 2 565 1455 Spain 00800 2255 4835"

Taiwan 886 (2) 2656 6688

Austria 00800 2255 4835*
Brazil +55 (11) 3759 7627
Central Europe & Greece +41 52 675 3777
France 00800 2255 4835*
India 000 800 650 1835
Luxembourg +41 52 675 3777
The Netherlands 00800 2255 4835*
Poland +41 52 675 3777
Russia & CIS +7' (495) 6647564
Sweden 00800 2255 4835*
United Kingdom & Ireland 00800 2255 4835*

Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Canada 1 800 833 9200 Denmark +45 80 88 1401 Germany 00800 2255 4835*

taly 00800 2255 4835*
Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90
Norway 800 16098

Norway 800 16098 Portugal 80 08 12370 South Africa +41 52 675 3777 Switzerland 00800 2255 4835* USA 1 800 833 9200

For Further Information. Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tek.com. Copyright © Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies.

17 Apr 2025 48W-61716-14 tek.com

^{*} European toll-free number. If not accessible, call: +41 52 675 3777

Čestné prohlášení

Název veřejné zakázky:	6 GHz osciloskop
Obchodní firma nebo název dodavatele / jméno:	TESTOVACÍ TECHNIKA s.r.o.
Sídlo:	Československé armády 923/15, 290 01 Poděbrady
IČO:	26129507

Dodavatel shora uvedené veřejné zakázky se zavazuje

- a) po celou dobu trvání smluvního vztahu založeného na základě této veřejné zakázky zajistit dodržování veškerých pracovněprávních předpisů (odměňování, pracovní doba, doba odpočinku mezi směnami, placené přesčasy), dále předpisů týkajících se oblasti zaměstnanosti a bezpečnosti a ochrany zdraví při práci, tj. zejména zákona č. 435/2004 Sb., o zaměstnanosti, ve znění pozdějších předpisů, a Zákoníku práce, a to vůči všem osobám, které se na plnění smlouvy podílejí (bez ohledu na to, zda budou činnosti prováděny dodavatelem či jeho poddodavateli) a
- b) po celou dobu trvání smluvního vztahu založeného na základě této veřejné zakázky zajistit dodržování právních předpisů z oblasti práva životního prostředí, jež naplňuje cíle environmentální politiky související se změnou klimatu, využíváním zdrojů a udržitelnou spotřebou a výrobou, především zákona č. 114/1992 Sb., o ochraně přírody a krajiny, ve znění pozdějších předpisů a zákona č. 17/1992 Sb., o životním prostředí, ve znění pozdějších předpisů. Dodavatel tak musí přijmout veškerá opatření, která po něm lze rozumně požadovat, aby chránil životní prostředí a omezil škody způsobené znečištěním, hlukem a jinými jeho činnostmi a musí zajistit, aby emise, půdní znečistění a odpadní vody z jeho činnosti nepřesáhly hodnoty stanovené příslušnými právními předpisy.

Dodavatel zároveň bere na vědomí, že porušení výše uvedených závazků může být v souladu s ust. kupní smlouvy pro zadavatele důvodem pro odstoupení od smlouvy.

Podpis osoby oprávněné jednat za dodavatele či jeho jménem:				
Místo:	Poděbrady			
Jméno, příjmení, funkce:	Ing. Bohumil Kvapil, jednatel			
Podpis:				