

Purchase Contract

(hereafter the "Contract")

1. CONTRACTUAL PARTIES

1.1 Fyzikální ústav AV ČR, v. v. i. (Institute of Physics of the Czech Academy of Sciences),

with registered offices at: Na Slovance 1999/2, 182 00 Praha 8, Czech Republic, represented by: RNDr. Michael Prouza, Ph.D., Director, registered in the Register of public research institutions of the Ministry of Education, Youth and Sports of the Czech Republic.

ID No.: 68378271

Bank:		
Account No.:		

(hereinafter referred to as the "Buyer")

and

1.2 H TEST a.s.,

with registered offices at: Na Hřebenkách 1206/25, 150 00 Praha 5, Czech Republic, represented by: Ing. Václav Haasz, Chairman of the Board, registered in the Commercial Register at the Municipal Court in Prague, under file No. B 6041.

ID No.: 25784480 Tax ID No.: CZ25784480

(hereinafter referred to as the "Seller")

(the Buyer and the Seller are hereinafter jointly referred to as the "Parties" and each of them individually as a "Party").

2. FUNDAMENTAL PROVISIONS

2.1 The Buyer is the Beneficiary of the project "Investment for RI CERN-CZ (CERN-INV)" under the Operational Programme Jan Amos Komenský within the framework of EU funds, project registration number CZ.02.01.01/00/23_015/0008198 (hereinafter referred to as the "Project"). The subject of performance under this Contract is intended for the Project and mainly financed from the support provided for its implementation.

- 2.2 The Seller has been selected as the winner of a public procurement procedure announced by the Buyer in accordance with Act No. 134/2016 Coll., on Public Procurement, as amended (hereinafter the "Act"), for the public contract with the title "Precision LCR meters" (hereinafter the "Procurement Procedure").
- 2.3 The documentation necessary for the implementation of the subject of performance hereof consist of
 - 2.3.1 **Technical specifications** of the subject of performance hereof attached as **Annex 1** hereto.
 - 2.3.2 The Seller's bid submitted within the Procurement Procedure in its parts which describe the subject of performance in technical detail (hereinafter the "Seller's Bid"); the Sellers's Bid forms Annex 2 to this Contract and is an integral part hereof.

In the event of a conflict between the Contract and its Annex or between the Contract's Annexes, the technical specification / requirement of the higher level / quality shall prevail.

2.4 The Seller acknowledges that it is essential for the Buyer that the Seller delivers and handovers the subject of performance within the specified time and in the specified quality as stated in Annexes 1 and 2 of this Contract (including invoicing). If the Seller fails to comply with the contractual requirements, the Buyer may incur damages.

3. SUBJECT-MATTER OF THE CONTRACT

3.1 The subject of this Contract is the Seller's obligation to deliver and transfer into the Buyer's ownership:

a precision LCR meters specified in detail in Annexes 1 and 2 hereto

(hereinafter the "Equipment")

and the Buyer's obligation to accept the Equipment and to pay the Seller the purchase price as defined below.

- 3.2 The following activities are an integral part of the performance to be provided by the Seller:
 - 3.2.1 Transport of the Equipment incl. all accessories specified in Annexes 1 and 2 hereto to the place of delivery;
 - 3.2.2 Telephone or on-line assistance with the installation of the Equipment;
 - 3.2.3 Delivery of detailed instructions and manuals for operation and maintenance in Czech or English language, in electronic or hardcopy (printed) versions;
 - 3.2.4 Free-of-charge warranty service during the warranty term;
 - 3.2.5 Provision of free technical support in the form of consultations, e.g. regarding fine tuning of the Equipment. The Seller shall provide the Buyer with this free support even after the warranty expires.

3.3 The Seller shall be liable for the Equipment and related services to be in full compliance with this Contract, its Annexes and all valid legal regulation, technical and quality standards and shall also be liable that the Buyer will be able to use the Equipment for the defined purpose. In case of any conflict between applicable standards, it is understood that the stricter standard or its part shall always apply.

4. PERFORMANCE PERIOD

The Seller undertakes to manufacture and deliver the Equipment to the Buyer within **3 months** of the conclusion of the Contract.

5. PURCHASE PRICE, INVOICING, PAYMENTS

- 5.1 The purchase price is based on the Seller's submitted bid and amounts to **1 220 501,10 CZK** (in words: onemillion twohundredtwentythousand fivehundredandone point ten CZK) excluding VAT for the Equipment (hereinafter the "**Price**") VAT shall be settled in accordance with the valid Czech regulation.
- 5.2 The Price includes any and all performance provided by the Seller in connection with meeting the Buyer's requirements for the proper and complete delivery of the Equipment hereunder, as well as all costs that the Seller may incur in connection with the delivery of the Equipment.
- 5.3 The Seller is entitled to invoice the Price after the acceptance protocol in accordance with Section 10.4 will have been signed. In case the Equipment will be delivered with minor defects, the Price shall be invoiced after removal of these minor defects.
- 5.4 All invoices issued by the Seller must contain all information required by the applicable laws of the Czech Republic and, in addition, they must
 - 5.4.1 contain registration number of this Contract, which the Buyer shall communicate to the Seller based on Seller's request before the issuance of the first invoice,
 - 5.4.2 state that the Equipment is supplied for the purposes of the project "Investment for RI CERN-CZ (CERN-INV)" with the registration number CZ.02.01.01/00/23_015/0008198,
 - 5.4.3 comply with the double taxation agreements, if applicable.
- 5.5 Buyer requests electronic invoicing to the electronic address efaktury@fzu.cz.
- 5.6 Invoices shall be payable within thirty (30) days of the date of their delivery to the above address. Payment of the invoiced amount means the date of its remittance to the Seller's account.
- 5.7 If an invoice is not issued in conformity with the payment terms stipulated by the Contract or if it does not comply with the requirements stipulated by law, the Buyer shall be entitled to return the invoice to the Seller as incomplete, or incorrectly issued, for correction or issue of a new invoice, as appropriate, within five (5) business days of the date of its delivery to the Buyer. In such a case, the Buyer shall not be in delay with the payment of the Price or part thereof and the Seller shall issue a corrected invoice with a new and identical maturity period commencing on the date of delivery of the corrected or newly issued invoice to the Buyer.

- 5.8 The Buyer shall be entitled to unilaterally set off any of their payments against any receivables claimed by the Seller due to:
 - 5.8.1 damages caused by the Seller,
 - 5.8.2 contractual penalties.
- 5.9 The Seller shall not be entitled to set off any of his receivables against any part of the Buyer's receivable hereunder.

6. OWNERSHIP TITLE

The ownership right to the Equipment and at the same time the associated risk of damage shall pass to the Buyer by delivery.

7. PLACE OF DELIVERY

The place of delivery of the Equipment shall be the seat of the Buyer at Na Slovance 1999/2, 182 00 Praha 8, Czech Republic.

8. NOTIFICATION OF DELIVERY

The Seller shall notify the Buyer in writing of the exact date of delivery of the Equipment at least 15 days prior to such date, ensuring that the deadline for the performance hereunder is maintained.

9. INTERACTION OF THE PARTIES

- 9.1 The Seller undertakes to notify the Buyer of any obstacles on his part, which may negatively influence proper and timely delivery of the Equipment.
- 9.2 The Seller undertakes to provide the Buyer with cooperation in the event of inspections by authorized entities in connection with the Project.

10. DELIVERY AND ACCEPTANCE

- 10.1 The Seller shall transport the Equipment at his own cost to the place of delivery. If the shipment is intact, the Buyer shall issue delivery note for the Seller.
- 10.2 The Buyer shall verify whether the Equipment is functional and meets the technical requirements set out in Annexes 1 and 2 hereof within 3 weeks of the delivery of the Equipment.
- 10.3 The delivery shall include all technical documentation pertaining to the Equipment, user manuals and certificate of compliance of the Equipment and all its parts and accessories with approved standards.
- 10.4 The procedure shall be completed by acceptance of the Equipment confirmed by the acceptance

protocol. The protocol shall contain the following information:

- 10.4.1 Information about the Seller, the Buyer and any subcontractors;
- 10.4.2 Description of the Equipment including description of all components and their serial numbers;
- 10.4.3 List of technical documentation including the manuals;
- 10.4.4 Eventually reservation of the Buyer regarding minor defects including the manner and deadline for their removal and
- 10.4.5 Date and signature of the representative of the Buyer specified in Section 11.2 hereof.
- 10.5 Acceptance of the Equipment does not release the Seller from liability for defects that were not detected during the acceptance procedure.
- 10.6 The Buyer shall not be obliged to accept Equipment, which would show defects that would otherwise not form a barrier, on their own or in connection with other defects, to using the Equipment. In this case, the Buyer shall issue a record containing the reason for his refusal to accept the Equipment.

11. REPRESENTATIVES, NOTICES

11.1 The Seller authorized the following representatives to communicate with the Buyer in all matters relating to the Equipment delivery:

11.2 The Buyer authorized the following representatives to communicate with the Seller in all matters relating to the Equipment delivery:

- 11.3 The representatives according to Sections 11.1 and 11.2 can be changed by a unilateral written declaration of the Buyer / Seller delivered to the Seller / Buyer.
- 11.4 All notifications to be made between the Parties hereunder must be made out in writing and delivered by hand (with confirmed receipt) or by post (to the address of the Seller's or Buyer's registered offices), or in the form of electronic delivery incorporating electronic signature (qualified certificate) to epodatelna@fzu.cz in the case of Buyer and to info@htest.cz in the case of the Seller.
- 11.5 In all technical and expert matters (discussions on the Equipment testing, notification of the need to provide warranty or post-warranty service, technical assistance etc.), electronic communication

between technical representatives of the Parties will be acceptable using e-mail addresses specified in Sections 11.1 and 11.2.

12. TERMINATION

- 12.1 This Contract may be terminated early by agreement of the Parties or withdrawal from the Contract on the grounds stipulated by law or in the Contract.
- 12.2 The Buyer is entitled to withdraw from the Contract without any penalty from the Seller in any of the following events:
 - 12.2.1 The Seller is in delay with the delivery of the Equipment longer than 1 month after the date pursuant to Section 4. hereof.
 - 12.2.2 The technical parameters or other conditions set out in the technical specifications set out in Annexes 1 and 2 to this Contract and in the relevant applicable technical standards will not be met by the Equipment at acceptance.
 - 12.2.3 Facts emerge bearing evidence that the Seller will not be able to deliver the Equipment.
 - 12.2.4 The Seller has breached the obligations specified within the conditions of the Procurement Procedure, in particular the obligations arising from the affidavit which forms Annex 3 to this Contract, necessary for the selection of an economic operator according to Section 2.2 of this Contract.
- 12.3 The Seller is entitled to withdraw from the Contract in the event of the Buyer being in default with the payment for more than 2 months with the exception of the cases when the Buyer refused an invoice due to defect on the delivered Equipment or due to breach of the Contract by the Seller.
- 12.4 Withdrawal from the Contract becomes effective on the day the written notification to that effect is delivered to the other Party. The Party which had received performance from the other Party prior to such withdrawal shall duly return such performance.

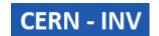
13. **INSURANCE**

- 13.1 The Seller undertakes to insure the Equipment against all risks, in the amount of the Price for the entire period from the commencement of the transportation of the Equipment until duly handed over to the Buyer. In the event of a breach of this obligation, the Seller shall be liable to the Buyer for damages incurred in connection therewith.
- 13.2 The Seller is liable for the damages that he has caused. The Seller is also liable for damages caused by third parties which have undertaken to carry out performance or part thereof under this Contract.

14. WARRANTY TERMS

14.1 The Seller shall provide warranty for the quality of the Equipment for a period of **3 years**.

- 14.2 The warranty term shall commence on the day following the date of signing of the acceptance protocol pursuant to Section 10.4 hereof. The warranty does not cover consumable parts. Consumable parts for the purposes of the Contract are the items contained in the Equipment which are consumed at regular intervals during the normal use of the Equipment, i.e. parts which have a specified typical lifetime, that does not exceed the warranty period provided the Equipment is used with normal frequency.
- 14.3 Should the Buyer discover a defect, he shall notify the Seller to rectify such defect using the e-mail address: info@htest.cz. The Seller is obliged to notify the Buyer without delay about any change of this e-mail address. The Seller shall be obliged to review any warranty claim within 72 hours (within business days) from its receipt and to propose solution, unless agreed otherwise by the Parties.
- 14.4 During the warranty period, the Seller shall be obliged to rectify any claimed defects within 30 days from the date on which the Equipment was delivered to the Seller for repair or within 30 days from receipt of the Buyer's notification if the Seller sends a technician to perform the repair on-site. In cases of unusual defects, the Seller shall be obliged to rectify the defect in the period corresponding to the nature of the defect and to define the deadline for the completion of the repair or for shipping of the rectified Equipment.
- 14.5 During the warranty period, any and all costs associated with defect rectification / repair including transport and travel expenses of the Seller shall be always borne by the Seller.
- 14.6 The repaired Equipment shall be delivered by the Seller to the Buyer along with a protocol confirming removal of the defect (hereinafter the "Repair Protocol"). If the Equipment is delivered duly repaired and defect-free, the Buyer will confirm the Repair Protocol.
- 14.7 The repaired part (component) shall be subject to a new warranty term in accordance with Section 14.1 which commences to run on the day following the date when the repaired Equipment was delivered to the Buyer. However, the aggregate warranty period for any part of the Equipment shall not exceed 60 months.
- 14.8 The Seller undertakes to provide the Buyer with updates of the software controlling the Equipment for the entire term of warranty.


15. CONTRACTUAL PENALTIES

- 15.1 The Buyer shall be entitled to a contractual penalty in the amount of 0.1 % of the Price for each commenced day of delay with the performance pursuant to the relevant part of Section 4. hereof.
- 15.2 The Buyer shall be entitled to a contractual penalty in the amount of 0.05 % of the Price for each commenced day of delay with rectifying of defects claimed within the warranty period.
- 15.3 In the event of default in payment of any due receivables (monetary debt) under the Contract, the defaulting Party (the debtor) shall be obliged to pay a contractual penalty of 0.05 % of the amount due for each commenced day of delay in payment.
- 15.4 Contractual penalties are payable within 30 days of receipt of the demand for payment.

- 15.5 Payment of the contractual penalty shall be without prejudice to the rights of the Parties to claim compensation for damages incurred.
- 15.6 Payment of any contractual penalty cannot be demanded if the breach of the contractual obligation causes force majeure.

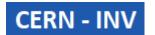
16. **DISPUTES**

In the event that any dispute arising out of this Contract cannot be resolved by negotiations, it shall be resolved by a court in the Czech Republic; the court having jurisdiction will be the court where the seat of the Buyer is located. Disputes shall be resolved exclusively by the law of the Czech Republic.

17. FINAL PROVISIONS

- 17.1 This Contract constitutes the entire agreement between the Parties. The relations between the Parties not regulated by this Contract shall be governed by Czech law, in particular by the Act No. 89/2012 Coll., the Civil Code, as amended (hereinafter the "Civil Code").
- 17.2 This Contract may be amended or supplemented solely by written amendments. The Parties expressly refuse to amend the Contract in any other way.
- 17.3 The Parties expressly agree that the Contract will be published in accordance with Act No. 340/2015 Coll., on special conditions for the effectiveness of some contracts, publication of these contracts and Contract Register, as amended. The Parties hereby declare that all information contained in the Contract and its Annexes is not considered trade secrets under § 504 of the Civil Code and grant permission for their use and disclosure without setting any additional conditions. The Buyer shall ensure the publication of the Contract in the Contract Register.
- 17.4 This Contract becomes effective as of the day of its publication in the Contract Register.
- 17.5 The following Annexes form an integral part of the Contract:

Annex 1: Technical specification on the subject of performance

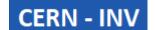

Annex 2: Technical description of the Equipment as presented in Seller's bid

Annex 3: Affidavit according to § 6 paragraph 4 of the Act No. 134/2016 Coll.

17.6 The Parties, manifesting their consent with the entire contents of this Contract, attach their signature hereunder.

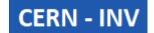
In Prague, 27. 2. 2025 In Prague, 26. 2. 2025

For the Buyer For the Seller


RNDr. Michael Prouza, Ph.D. Ing. Václav Haasz

Director

Ing. Václav Haasz Chairman of the Board

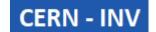


Annex 1 - Technical specification on the subject of performance

Tab. 1 – The Equipment (3 LCR meters) must meet the technical conditions and include components listed in this table.

	Description and minimum specification of the	Description and specification of the	Complies
No.	Equipment as defined by the Buyer	Equipment offered by the Seller	YES/NO
1	Implemented test cable lengths: 0 m, 1 m, 2 m, 4	Implemented test cable lengths: 0 m, 1 m, 2	YES
1	m	m, 4 m	TES
2	Available trigger modes: Internal trigger, manual	Available trigger modes: Internal trigger,	YES
	trigger, external trigger, GPIB trigger	manual trigger, external trigger, GPIB trigger	TES
	Available measurement parameters	Available measurement parameters	
	Cp-D, Cp-Q, Cp-G, Cp-Rp	Cp-D, Cp-Q, Cp-G, Cp-Rp	
	Cs-D, Cs-Q, Cs-Rs	Cs-D, Cs-Q, Cs-Rs	
	Lp-D, Lp-Q, Lp-G, Lp-Rp, Lp-Rdc	Lp-D, Lp-Q, Lp-G, Lp-Rp, Lp-Rdc	
	Ls-D, Ls-Q, Ls-Rs, Ls-Rdc	Ls-D, Ls-Q, Ls-Rs, Ls-Rdc	
	R-X	R-X	
	Z-θd, Z-θr	Z-θd, Z-θr	
	G-B	G-B	
	Y- θd, Y-θr	Y- θd, Y-θr	
	Cp Capacitance value measured with parallel-	Cp Capacitance value measured with	
	equivalent circuit model	parallel-equivalent circuit model	
	Cs Capacitance value measured with series-	Cs Capacitance value measured with series-	
	equivalent circuit model	equivalent circuit model	
	Lp Inductance value measured with parallel-	Lp Inductance value measured with parallel-	
	equivalent circuit model	equivalent circuit model	
	Ls Inductance value measured with series-	Ls Inductance value measured with series-	
_	equivalent circuit model	equivalent circuit model	
3	D Dissipation factor	D Dissipation factor	YES
	Q Quality factor (inverse of D)	Q Quality factor (inverse of D)	
	G Equivalent parallel conductance measured with	G Equivalent parallel conductance measured	
	parallel-equivalent circuit model	with parallel-equivalent circuit model	
	Rp Equivalent parallel resistance measured with	Rp Equivalent parallel resistance measured	
	parallel-equivalent circuit model	with parallel-equivalent circuit model	
	Rs Equivalent series resistance measured with	Rs Equivalent series resistance measured	
	series-equivalent circuit model	with series-equivalent circuit model	
	Rdc Direct-current resistance	Rdc Direct-current resistance	
	R Resistance	R Resistance	
	X Reactance	X Reactance	
	Z Impedance	Z Impedance	
	Y Admittance	Y Admittance	
	$oldsymbol{ heta} oldsymbol{ heta}$ Phase angle of impedance/admittance	θd Phase angle of impedance/admittance	
	(degree)	(degree)	
	θr Phase angle of impedance/admittance (radian)	9r Phase angle of impedance/admittance	
	B Susceptance	(radian)	
		B Susceptance	
4	Available equivalent circuits for measurements:	Available equivalent circuits for	YES
	Parallel and Serial	measurements: Parallel and Serial	
5	Measurement frequency (frequency of the test	Measurement frequency (frequency of the	YES
	signal) between 20 Hz and 2 MHz	test signal) between 20 Hz and 2 MHz	

	Measurement frequency resolution:	Measurement frequency resolution:	
	0.01 Hz for (20 Hz - 99.99 Hz),	0.01 Hz for (20 Hz - 99.99 Hz),	
	0.1 Hz for (100 Hz - 999.9 Hz),	0.1 Hz for (100 Hz - 999.9 Hz),	
6	1 Hz for (1 kHz - 9.999 kHz),	1 Hz for (1 kHz - 9.999 kHz),	YES
	10 Hz for (10 kHz - 99.99 kHz),	10 Hz for (10 kHz - 99.99 kHz),	
	100 Hz for (100 kHz - 999.9 kHz),	100 Hz for (100 kHz - 999.9 kHz),	
	1 kHz for (1 MHz - 2 MHz)	1 kHz for (1 MHz - 2 MHz)	
7	Minimal test frequency measurement accuracy:	Minimal test frequency measurement	YES
	+/-0.01%	accuracy: +/-0.01%	123
8	Test signal voltage 0 Vrms - 2.0 Vrms	Test signal voltage 0 Vrms - 2.0 Vrms	YES
	Test signal voltage resolution:	Test signal voltage resolution:	
	100 uVrms <0 Vrms, 0.2 Vrms>,	100 uVrms <0 Vrms, 0.2 Vrms>,	
9	200 uVrms (0.2 Vrms, 0.5 Vrms>,	200 uVrms (0.2 Vrms, 0.5 Vrms>,	YES
	500 uVrms (0.5 Vrms, 1 Vrms>,	500 uVrms (0.5 Vrms, 1 Vrms>,	
	1 mVrms (1 Vrms, 2 Vrms>	1 mVrms (1 Vrms, 2 Vrms>	
10	Minimal accuracy of test signal voltage	Minimal accuracy of test signal voltage	YES
10	+/- (10% + 1 mVrms)	+/- (10% + 1 mVrms)	163
11	Test signal current 0 Arms - 20 mArms	Test signal current 0 Arms - 20 mArms	YES
	Test signal current resolution:	Test signal current resolution:	
	1 uArms <0 Arms, 2 mArms>,	1 uArms <0 Arms, 2 mArms>,	
12	2 uArms (2 mArms, 5 mArms>,	2 uArms (2 mArms, 5 mArms>,	YES
	5 uArms (5 mArms, 10 mArms>,,	5 uArms (5 mArms, 10 mArms>,,	
	10 uArms (10 mArms, 20 mArms>,	10 uArms (10 mArms, 20 mArms>,	
13	Minimal accuracy of test signal current	Minimal accuracy of test signal current	YES
15	+/- (10% + 10 uArms)	+/- (10% + 10 uArms)	163
14	DC bias signal 0 V to +2 V	DC bias signal 0 V to +2 V	YES
	DC bias accuracy	DC bias accuracy	
15	0.1% + 2 mV for temperatures <18-28C>	0.1% + 2 mV for temperatures <18-28℃>	YES
12	$(0.1\% + 2 \text{ mV}) \times 4 \text{ for temperatures } < 0.18$ C) and	$(0.1\% + 2 \text{ mV}) \times 4 \text{ for temperatures } < 0.18C)$	163
	(28-55C>	and (28-55C>	
	Available compensation functions: OPEN	Available compensation functions: OPEN	
16	compensation, SHORT compensation, LOAD	compensation, SHORT compensation, LOAD	YES
	compensation	compensation	
	Available interfaces for communication with LCR	Available interfaces for communication with	
	meters:	LCR meters:	
17	GPIB (IEEE Std 488.1, 2 and SCPI),	GPIB (IEEE Std 488.1, 2 and SCPI),	YES
	USB (USB 2.0 or faster)	USB (USB 2.0 or faster)	
	LAN (10/100 BaseT Ethernet)	LAN (10/100 BaseT Ethernet)	



Tab. 2 – Data on the evaluation criteria "New / Refurbished LCR meters" and "Technical characteristics of the bid"

Description	Value
New / Refurbished LCR meters	
Number of new LCR meters to be supplied (out of 3)	3
Technical characteristics of the bid	
Test signal voltage range above the required 0 Vrms to 2.0 Vrms (in Vrms)	
DC bias signal range wider than the required 0 V to +2 V (in V, positive or negative)	
Test signal current range above the required 0 Arms to 20 mArms (in mArms)	

Annex 2

The Seller's bid in the extent it describes technical parameters of the Equipment

3 pcs of NEW precision LCR meters Keysight E4980B

E4980B Precision LCR Meter

20 Hz to 2 MHz

E4980BL Precision LCR Meter

20 Hz to 300 kHz/500 kHz/1 MHz

Table of Contents

Definitions	3
How to Use Tables	3
	-
E4980B/E4980BL Model and Option Numbers	3
Basic Specifications	4
Basic Accuracy	14
Calibration Accuracy Acal	17
General Specifications	29
•	
Supplemental Information	33
Web Resources	42

Definitions

All specifications apply to the conditions of a 0 to 55°C temperature range, unless otherwise stated, and 30 minutes after the instrument has been turned on.

Specifications (spec.): Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions.

Supplemental information is provided as information that is useful in operating the instrument but is not covered by the product warranty. This information is classified as either typical or nominal.

Typical (typ.): Expected performance of an average unit without taking guardbands into account.

Nominal (nom.): A general descriptive term that does not imply a level of performance.

How to Use Tables

When measurement conditions fall under multiple categories in a table, apply the best value.

For example, basic accuracy Ab is 0.10% under the following conditions:

Measurement time mode SHORT

Test frequency 125 Hz

Test signal voltage 0.3 Vrms

E4980B/E4980BL Model and Option Numbers

The E4980B is the model number of the 20 Hz to 2 MHz frequency range LCR meter. The E4980BL is the model number of the 20 Hz to 300 kHz, 500 kHz or 1 MHz frequency range LCR meter. See the E4980B/E4980BL Configuration Guide (3124-1418) for more details.

Frequency range	Model number and option
20 Hz to 2 MHz	E4980B
20 Hz to 1 MHz	E4980BL-102
20 Hz to 500 kHz	E4980BL-052
20 Hz to 300 kHz	E4980BL-032

Basic Specifications

Measurement functions

Measurement parameters

- · Cp-D, Cp-Q, Cp-G, Cp-Rp
- · Cs-D, Cs-Q, Cs-Rs
- · Lp-D, Lp-Q, Lp-G, Lp-Rp, Lp-Rdc
- Ls-D, Ls-Q, Ls-Rs, Ls-Rdc
- R-X
- Z-θd, Z-θr
- G-B
- Y- θd, Y-θr
- Vdc-ldc¹

Definitions

- Cp Capacitance value measured with parallel-equivalent circuit model
- Cs Capacitance value measured with series-equivalent circuit model
- Lp Inductance value measured with parallel-equivalent circuit model
- Ls Inductance value measured with series-equivalent circuit model
- D Dissipation factor
- Q Quality factor (inverse of D)
- G Equivalent parallel conductance measured with parallel-equivalent circuit model
- Rp Equivalent parallel resistance measured with parallel-equivalent circuit model
- Rs Equivalent series resistance measured with series-equivalent circuit model
- Rdc Direct-current resistance
- R Resistance
- X Reactance
- Z Impedance
- Y Admittance

^{1.} E4980B-001 is required.

 θd Phase angle of impedance/admittance (degree)

Phase angle of impedance/admittance (radian)

B Susceptance

θr

Vdc Direct-current voltage

Idc Direct-current electricity

Deviation measurement function: Deviation from reference value and percentage of deviation from reference value can be output as the result.

Equivalent circuits for measurement: Parallel, Series

Impedance range selection: Auto (auto range mode), manual (hold range mode)

Trigger mode: Internal trigger (INT), manual trigger (MAN), external trigger (EXT), GPIB trigger (BUS)

Table 1. Trigger delay time

Range	0 s – 999 s
Resolution	100 μs (0 s ≤ - ≤ 100 s)
	1 ms (100 s < - ≤ 999 s)

Table 2. Step delay time

Range	0 s - 999 s	
Resolution	100 µs (0 s ≤ - ≤ 100 s)	
	1 ms (100 s < - ≤ 999 s)	

Measurement terminal: Four-terminal pair

Test cable length: 0 m, 1 m, 2 m, 4 m

Measurement time modes: Short mode, medium mode, long mode.

Table 3. Averaging

Range	1 – 256 measurements
Resolution	1

Test signal

Table 4. Test frequencies

Test frequencies	20 Hz - 2 MHz (E4980B)	
	20 Hz - 1 MHz (E4980BL-102)	
	20 Hz - 500 kHz (E4980BL-052)	
	20 Hz - 300 kHz (E4980BL-032)	
Resolution	0.01 Hz (20 Hz - 99.99 Hz)	
	0.1 Hz (100 Hz - 999.9 Hz)	
	1 Hz (1 kHz - 9.999 kHz)	
	10 Hz (10 kHz - 99.99 kHz)	
	100 Hz (100 kHz - 999.9 kHz)	
	1 kHz (1 MHz - 2 MHz)	
Measurement accuracy	± 0.01%	

Table 5. Test signal modes

Normal	Program selected voltage or current at the measurement terminals who they are opened or short-circuited, respectively.	
Constant 1	Maintains selected voltage or current at the device under test (DUT)	
	independently of changes in impedance of DUT.	

Signal Level

Table 6. Test signal voltage

Range		0 Vrms – 2.0 Vrms	
Resolution		100 μVrms (0 Vrms ≤ - ≤ 0.2 Vrms) 200 μVrms (0.2 Vrms < - ≤ 0.5 Vrms) 500 μVrms (0.5 Vrms < - ≤ 1 Vrms) 1 mVrms (1 Vrms < - ≤ 2 Vrms)	
Accuracy	Normal	± (10% + 1 mVrms)	Test frequency ≤ 1 MHz: spec. Test frequency > 1 MHz: typ.
	Constant 1	± (6% + 10 μArms)	Test frequency ≤ 1 MHz: spec. Test frequency > 1 MHz: typ.

Table 7. Test signal current

Range		0 Arms - 20 mArms	
Resolution		1 μArms (0 Arms ≤ - ≤ 2 mArms) 2 μArms (2 mArms < - ≤ 5 mArms) 5 μArms (5 mArms < - ≤ 10 mArms) 10 μArms (10 mArms < - ≤ 20 mArms)	
Accuracy	Normal	± (10% + 10 μArms)	Test frequency ≤ 1 MHz: spec. Test frequency > 1 MHz: typ.
	Constant 1	± (6% + 10 μArms)	Test frequency ≤ 1 MHz: spec. Test frequency > 1 MHz: typ.

^{1.} When auto level control function is on and no warning message is displayed.

Output impedance: 100Ω (nominal)

Test signal level monitor function

- Test signal voltage and test signal current can be monitored.
- Level monitor accuracy (see next page)

Table 8. Test signal voltage monitor accuracy (Vac)

Test signal voltage ²	Test frequency	Specification	
5 mVrms - 2 Vrms	≤ 1 MHz	± (3% of reading value + 0.5 mVrms)	
	> 1 MHz	± (6% of reading value + 1 mVrms)	

Table 9. Test signal current monitor accuracy (lac)

Test signal voltage ²	Test frequency	Specification
50 μArms - 20 mArms	≤1 MHz	± (3% of reading value + 5 μArms)
	> 1 MHz	± (6% of reading value + 10 μArms)

Measurement display ranges

Table 10 shows the range of measured value that can be displayed on the screen. For the effective measurement ranges, refer to Figure 1 impedance measurement accuracy example.

Table 10. Allowable display ranges for measured values

Parameter	Measurement display range		
Cs, Cp	± 1.000000 aF to 999.9999 EF		
Ls, Lp	± 1.000000 aH to 999.9999 EH		
D	± 0.000001 to 9.999999		
Q	± 0.01 to 99999.99		
R, Rs, Rp, X, Z, Rdc	± 1.000000 aΩ to 999.9999 EΩ		
G, B, Y	± 1.000000 aS to 999.9999 ES		
Vdc	± 1.000000 aV to 999.9999 EV		
ldc	± 1.000000 aA to 999.9999 EA		
θr	± 1.000000 arad to 3.141593 rad		
θd	± 0.0001 deg to 180.0000 deg		
Δ%	± 0.0001% to 999.9999%		

a: 1 x 10⁻¹⁸, E: 1 x 10¹⁸

^{1.} When auto level control function is on.

^{2.} This is not an output value but rather a displayed test signal level.

Absolute measurement accuracy

The following equations are used to calculate absolute accuracy.

Absolute accuracy Aa of |Z|, |Y|, L, C, R, X, G, B (L, C, X, and B accuracies apply when Dx \leq 0.1, R and G accuracies apply when Qx \leq 0.1)

When $Dx \ge 0.1$, multiply Acal by $\sqrt{1+Dx^2}$ for L, C, X, and B accuracies

When $Qx \ge 0.1$, multiply Acal by $\sqrt{1+Qx^2}$ for R and G accuracies

Under an AC magnetic field, the following equation is applied to the measurement accuracy.

$$A \times (1 + B \times (2 + 0.5 / Vs))$$

Where A Absolute accuracy

B Magnetic flux density [Gauss]

Vs Test signal voltage level [Volts]

Equation 1. Aa = Ae + Acal

Aa Absolute accuracy (% of reading value)

Ae Relative accuracy (% of reading value)

Acal Calibration accuracy (%)

where G accuracy is applied only to G-B measurements.

D accuracy (when Dx ≤ 0.1)

Equation 2. De + θ cal

Dx Measured D value

De Relative accuracy of D

 θ cal Calibration accuracy of θ (radian)

when $0.1 < Dx \le 1$, multiply θ cal by (1 + Dx)

Q accuracy (When Qx × Da < 1) 1

Equation 3.

 $(Qx^2 \times Da)$

(1 ∓ Qx × Da)

Qx Measured Q value

Da Absolute accuracy of D

¹ When Qx x Da ≥ 1, Q accuracy = $\pm \infty$

θ accuracy

Equation 4. $\theta e + \theta cal$

 θ e Relative accuracy of θ (degree)

θcal Calibration accuracy of θ (degree)

G accuracy (when Dx ≤ 0.1)

Equation 5. Bx + Da(S)

$$Bx = 2\pi f Cx = \frac{1}{2\pi f Lx}$$

Dx Measured D value

Bx Measured B value (S)

Da Absolute accuracy of D

f Test frequency (Hz)

Cx Measured C value (F)

Lx Measured L value (H)

where the accuracy of G is applied to Cp-G measurements.

Absolute accuracy of Rp (when Dx ≤ 0.1 and Dx > Da) 1

Equation 6. $Rpx \times Da$ $\pm ----------------------------------(\Omega)$

 $\textit{Dx} \neq \textit{Da}$ Measured Rp value (Ω)

Dx Measured D value

Rpx

Da Absolute accuracy of D

 $^{^{1}}$ When Dx ≤ Da, Rp accuracy = ± $^{\infty}$

Absolute accuracy of Rs (when Dx ≤ 0.1)

Equation 7.
$$Xx \times Da$$
 (Ω) $Xx = \frac{1}{2\pi fCx} = 2\pi fLx$

Dx Measured D value

Xx Measured X value (Ω)

Da Absolute accuracy of D

f Test frequency (Hz)

Cx Measured C value (F)

Lx Measured L value (H)

Relative accuracy

Relative accuracy includes stability, temperature coefficient, linearity, repeatability, and calibration interpolation error. Relative accuracy is specified when all of the following conditions are satisfied:

- Warm-up time: 30 minutes
- Test cable length: 0 m, 1 m, 2 m, or 4 m (Keysight Technologies, Inc. 16048A/D/E)
- A "Signal Source Overload" warning does not appear. When the test signal current exceeds a value in table 11 below, a "Signal Source Overload" warning appears.

Table 11.

Test signal voltage	Test frequency	Condition 1
≤ 2 Vrms	_	-
> 2 Vrms	≤ 1 MHz	The smaller value of either 110 mA or 130 mA - 0.0015 × Vac × (Fm / 1 MHz) × (L_cable + 0.5)
	> 1 MHz	70 mA - 0.0015 × Vac × (Fm / 1 MHz) × (L_cable + 0.5)

^{1.} When the calculation result is a negative value, 0 A is applied.

Vac [V] Test signal voltage

Fm [Hz] Test frequency

L_cable [m] Cable length

- OPEN and SHORT corrections have been performed.
- · Bias current isolation: Off
- . The DC bias current does not exceed a set value within each range of the DC bias current
- The optimum impedance range is selected by matching the impedance of DUT to the effective measuring range.

|Z|, |Y|, L, C, R, X, G, and B accuracy (L, C, X, and B accuracies apply when Dx \leq 0.1, R and G accuracies apply Qx \leq 0.1)

When Dx > 0.1, multiply Ae by $\sqrt{1+Dx^2}$ for L, C, X, and B accuracies

When Qx > 0.1, multiply Ae by $\sqrt{1+Qx^2}$ for R and G accuracies

Relative accuracy Ae is given as:

Equation 8. $Ae = [Ab + Zs / |Zm| \times 100 + Yo \times |Zm| \times 100] \times Kt$

Zm Impedance of DUT

Ab Basic accuracy

Zs Short offset

Yo Open offset

Kt Temperature coefficient

D accuracy

D accuracy De is given as - when $Dx \le 0.1$

Equation 9. $De = \pm Ae/100$

Dx Measured D value

Ae Relative accuracies of |Z|, |Y|, L, C, R, X, G, and B

When $0.1 < Dx \le 1$, multiply De by (1 + Dx)

Q accuracy (when Q x De <1) 1

Q accuracy Qe is given as:

$$Qe = \pm \frac{(Qx^2 \times De)}{(1 \mp Qx \times De)}$$

Qx Measured Q value

De Relative D accuracy

1. When Qx x De \geq 1, Qe = $\pm \infty$

θ accuracy

 θ accuracy θ e is given as:

Equation 11.
$$\theta e = \frac{180 \times Ae}{\pi \times 100}$$
 (deg)

Ae Relative accuracies of |Z|, |Y|, L, C, R, X, G, and B

1. When Qx x De \geq 1, Qe = $\pm \infty$

G accuracy (when Dx ≤ 0.1)

G accuracy Ge is given as:

Equation 12. Ge =
$$Bx \times De$$
 (S)

$$Bx = 2\pi fCx = \frac{1}{2\pi fLx}$$

Ge Relative G accuracy

Dx Measured D value

Bx Measured B value

De Relative D accuracy

f Test frequency (Hz)

Cx Measured C value (F)

Lx Measured L value (H)

Rp accuracy (when $Dx \le 0.1$ and Dx > De) 1

Rp accuracy Rpe is given as:

Equation 13.
$$Rpe = \pm \frac{Rpx \times De}{Dx \mp De} (\Omega)$$

Rpe Relative Rp accuracy

Rpx Measured Rp value (Ω)

Dx Measured D value

De Relative D accuracy

 1 When Dx ≤ Da, Rp accuracy = $\pm \infty$

Rs accuracy (when Dx ≤ 0.1)

Rs accuracy Rse is given as:

Equation 14. $Rse = Xx \times De$ (Ω)

$$Xx = \frac{1}{2\pi f Cx} = 2\pi f Lx$$

Rse Relative Rs accuracy

Dx Measured D value

Xx Measured X value (Ω)

De Relative D accuracy

f Test frequency (Hz)

Cx Measured C value (F)

Lx Measured L value (H)

Example of C-D accuracy calculation

Measurement conditions

Test frequency: 1 kHz

Measured C value: 100 nF

Test signal voltage: 1 Vrms

Measurement time mode: Medium

Measurement temperature: 23 °C

Ab = 0.05%

 $|Zm| = 1 / (2\pi \times 1 \times 103 \times 100 \times 10-9) = 1590 \Omega$

Zs = $0.6 \text{ m}\Omega \times (1 + 0.400/1) \times (1 + \sqrt{(1000/1000)}) = 1.68 \text{ m}\Omega$

Yo = $0.5 \text{ nS} \times (1 + 0.100/1) \times (1 + \sqrt{(100/1000)} = 0.72 \text{ nS}$

C accuracy: Ae = $[0.05 + 1.68 \text{ m}/1590 \times 100 + 0.72 \text{ n} \times 1590 \times 100] \times 1 = 0.05\%$

D accuracy: De = 0.05/100 = 0.0005

Basic Accuracy

Basic accuracy Ab is given from Table 12, 13, 14 and 15.

Table 12. Measurement time mode = SHORT

Test signal voltage

Test frequency [Hz]	5 mVrms ≤ - < 50 mVrms	50 mVrms ≤ - < 0.3 Vrms	0.3 Vrms ≤ - ≤ 1 Vrms	1 Vrms <-≤10 Vrms	10 Vrms < - ≤ 20 Vrms
20 ≤ - < 125	(0.6%) × (50 mVrms/Vs)	0.60%	0.30%	0.30%	0.30%
125 ≤ - ≤ 1 M	(0.2%) × (50 mVrms/Vs)	0.20%	0.10%	0.15%	0.15%
1 M < -≤2 M	(0.4%) × (50 mVrms/Vs)	0.40%	0.20%	0.30%	0.30%

Table 13. Measurement time mode = MED, LONG

Test signal voltage

Test frequency [Hz]	5 mVrms ≤ - < 30 mVrms	30 mVrms ≤ - < 0.3 Vrms	0.3 Vrms ≤ - ≤ 1 Vrms	1 Vrms < - ≤ 10 Vrms	10 Vrms < - ≤ 20 Vrms
20 ≤ - < 100	(0.25%) × (30 mVrms/Vs)	0.25%	0.10%	0.15%	0.15%
100 ≤ - ≤ 1 M	(0.1%) × (30 mVrms/Vs)	0.10%	0.05%	0.10%	0.15%
1 M < - ≤ 2 M	(0.2%) × (30 mVrms/Vs)	0.20%	0.10%	0.20%	0.30%

Vs [Vrms] Test signal voltage

Effect by impedance of DUT

Table 14. For impedance of DUT below 30 Ω , the following value is added.

Impedance of DUT

Test frequency [Hz]	1.08 Ω < Zx < 30 Ω	Zx ≤ 1.08 Ω
20 ≤ - ≤ 1 M	0.05%	0.10%
1 M < -≤2 M	0.10%	0.20%

Table 15. For impedance of DUT over 9.2 k Ω , the following value is added.

Impedance of DUT

Test frequency [Hz]	9.2 kΩ < Zx < 92 kΩ	92 kΩ ≤ Zx
10 k ≤ - ≤ 100 k	0%	0.05%
100 k < - ≤ 1 M	0.05%	0.05%
1 M < - ≤ 2 M	0.10%	0.10%

Effect of cable extension

When the cable is extended, the following element is added per one meter.

 $0.015 \% \times (Fm/1 MHz)^2 \times (L_cable)^2$

Fm [Hz]

Test frequency

L_cable [m]

Cable length

Short offset Zs

Table 16. Impedance of DUT > 1.08 Ω

Measurement time mode

Test frequency [Hz]	SHORT	MED, LONG
20 – 2 M	$2.5 \text{ m}\Omega \times (1 + 0.400/\text{Vs}) \times (1 + \sqrt{(1000/\text{Fm}))}$	$0.6 \text{ m}\Omega \times (1 + 0.400/\text{Vs}) \times (1 + \sqrt{(1000/\text{Fm}))}$

Table 17. Impedance of DUT ≤ 1.08 Ω

Measurement time mode

Test frequency [Hz] SHORT	MED, LONG
20 – 2 M	1 mΩ × (1 + 1/Vs) × (1 +	$\sqrt{(1000/\text{Fm})}$ 0.2 m Ω × (1 + 1/Vs) × (1 + $\sqrt{(1000/\text{Fm})}$
/s [Vrms]	Test signal voltage	

Fm [Hz]

Test frequency

Effect of cable extension (Short offset)

Table 18. When the cable is extended, the following value is added to Zs (independent of the measurement time mode).

Cable length

Test frequency [Hz]	0 m	1 m	2 m	4 m	FILESFIE
20 ≤ - ≤ 1 M	0	0.25 mΩ	0.5 mΩ	1 mΩ	
1 M < - ≤ 2 M	0	1 mΩ	2 mΩ	4 mΩ	

Open offset Yo

Table 19. Test signal voltage ≤ 2.0 Vrms

Measurement time mode

Test frequency [Hz]	SHORT	MED, LONG
20 ≤ - ≤ 100 k	2 nS × (1 + 0.100/Vs) × $(1 + \sqrt{(100/\text{Fm})})$	$0.5 \text{ nS} \times (1 + 0.100/\text{Vs}) \times (1 + \sqrt{(100/\text{Fm}))}$
100 k < - ≤ 1 M	20 nS × (1 + 0.100/Vs)	5 nS × (1 + 0.100/Vs)
1 M < -≤2 M	40 nS × (1 + 0.100/Vs)	10 nS × (1 + 0.100/Vs)

Table 20. Test signal voltage > 2.0 Vrms

Measurement time mode

Test frequency [Hz]	SHORT	MED, LONG
20 ≤ - ≤ 100 k	2 nS × (1 + 2/Vs) × (1 + √(100/Fm))	$0.5 \text{ nS} \times (1 + 2/\text{Vs}) \times (1 + \sqrt{(100/\text{Fm})})$
100 k < -≤1 M	20 nS × (1 + 2/Vs)	5 nS × (1 + 2/Vs)
1 M < - ≤ 2 M	40 nS × (1 + 2/Vs)	10 nS × (1 + 2/Vs)

Vs [Vrms] Test signal voltage

Fm [Hz] Test frequency

Note: The Open Offset may become three times greater in the ranges of 40 to 70 kHz and 80 to 100 kHz due to residual response.

Effect of cable length

Table 21. When the cable is extended, multiply Yo by the following factor.

Cable length

Test frequency [Hz]	0 m	1 m	2 m	4 m
100 ≤ - ≤ 100 k	1	1 + 5 × Fm/1 MHz	1 + 10 × Fm/1 MHz	1 + 20 × Fm/1 MHz
100 ≤ - ≤ 100 k	1	1 + 5 × Fm/1 MHz	1 + 10 × Fm/1 MHz	1 + 20 × Fm/1 MHz
100 ≤ - ≤ 100 k	1	1 + 5 × Fm/1 MHz	1 + 10 × Fm/1 MHz	1 + 20 × Fm/1 MHz

Fm [Hz] Test frequency

Temperature factor Kt

Table 22. Temperature factor Kt.

Temperature [°C]	Kt	
0 ≤ − < 18	4	
18 ≤ − ≤ 28	1	
28 < - ≤ 55	4	

Calibration Accuracy Acal

Calibration accuracy Acal is given below. For impedance of DUT or test frequency on the boundary line, apply the smaller value.

Table 23. Impedance range = 0.1, 1, 10 Ω

Test frequency [Hz]

	20 – 1 k	1 k - 10 k	10 k - 100 k	100 k - 300 k	300 k - 1 M	1 M - 2 M
Z [%]	0.03	0.05	0.05	0.05 + 5 × 10 ⁻⁵ Fm	0.05 + 5 × 10 ⁻⁵ Fm	0.1 + 1 × 10 ⁻⁴ Fm
θ [radian]	1 × 10 ⁻⁴	2 × 10 ⁻⁴	3 × 10 ⁻⁴	3 × 10 ⁻⁴ + 2 × 10 ⁻⁷ Fm	3 × 10 ⁻⁴ + 2 × 10 ⁻⁷ Fm	6 × 10 ⁻⁴ + 4 × 10 ⁻⁷ Fm

Table 24. Impedance range = 100 Ω

Test frequency [Hz]

	20 – 1 k	1 k - 10 k	10 k - 100 k	100 k - 300 k	300 k - 1 M	1 M - 2 M
Z [%]	0.03	0.05	0.05	0.05 + 5 × 10 ⁻⁵ Fm	0.05 + 5 × 10 ⁻⁵ Fm	0.1 + 1 × 10 ⁻⁴ Fm
θ [radian]	1 × 10 ⁻⁴	2 × 10 ⁻⁴	3 × 10 ⁻⁴	3 × 10 ⁻⁴	3 × 10 ⁻⁴	6 × 10 ⁻⁴

Table 25. Impedance range = 300, 1 k Ω

Test frequency [Hz]

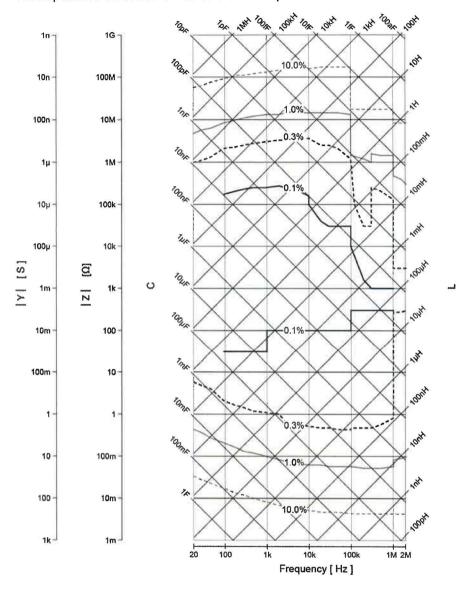
	20 – 1 k	1 k - 10 k	10 k - 100 k	100 k - 300 k	300 k - 1 M	1 M - 2 M
Z [%]	0.03	0.03	0.05	0.05	0.05	0.1
θ [radian]	1 × 10 ⁻⁴	1 × 10 ⁻⁴	3 × 10 ⁻⁴	3 × 10 ⁻⁴	3 × 10 ⁻⁴	6 × 10 ⁻⁴

Table 26. Impedance range = 3 k, 10 k Ω

Test frequency [Hz]

	20 – 1 k	1 k - 10 k	10 k - 100 k	100 k - 300 k	300 k - 1 M	1 M - 2 M
Z [%]	0.03 +	0.03 +	0.03 +	0.03 +	0.03 +	0.06 +
	1 × 10 ⁻⁴ Fm	2 × 10 ⁻⁴ Fm				
θ [radian]	(100 + 2.5	(100 + 2.5 Fm)	(100 + 2.5	(100 + 2.5 Fm)	(100 + 2.5	(200 + 5 Fm) ×
	Fm) × 10 ⁻⁶	× 10 ⁻⁶	Fm) × 10 ⁻⁶	× 10 ⁻⁶	Fm) × 10 ⁻⁶	10 ⁻⁶

Table 27. Impedance range = 30 k, 100 k Ω


Test frequency [Hz]

	20 – 1 k	1 k - 10 k	10 k - 100 k	100 k - 300 k	300 k - 1 M	1 M - 2 M
Z [%]	0.03 +	0.03 +	0.03 +	0.03 +	0.03 +	0.06 +
	1 × 10 ⁻³ Fm	1 × 10 ₋₃ Fm	1 × 10 ₋₃ Fm	1 × 10 ₋₃ Fm	1 × 10 ⁻⁴ Fm	2 × 10 ⁻⁴ Fm
θ [radian]	(100 + 20	(100 + 20 Fm)	(100 + 20	(100 + 20 Fm)	(100 + 2.5	(200 + 5 Fm)
	Fm) × 10 ⁻⁶	× 10 ⁻⁶	Fm) × 10 ⁻⁶	× 10 ⁻⁶	Fm) × 10 ⁻⁶	× 10 ⁻⁶
-m[kHz]	Test freque	ency				

Measurement accuracy

The impedance measurement calculation example below is the result of absolute measurement accuracy.

Figure 1. Impedance measurement accuracy (Test signal voltage = 1 Vrms, cable length = 0 m, measurement time mode = MED)

Compensation function

Table 28. The E4980B/E4980BL provides three types of compensation functions: OPEN compensation, SHORT compensation, and LOAD compensation.

Type of compensation	Description
OPEN compensation	Compensates errors caused by the stray admittance (C, G) of the test fixture.
SHORT compensation	Compensates errors caused by the residual impedance (L, R) of the test fixture.
LOAD compensation	Compensates errors between the actual measured value and a known standard value under the measurement conditions desired by the user.

List sweep

Points: There is a maximum of 201 points.

First sweep parameter (primary parameter): Test frequency, test signal voltage, test signal current, test signal voltage of DC bias signal, test signal current of DC bias signal, DC source voltage.

Second sweep parameter (secondary parameter): None, impedance range, test frequency, test signal voltage, test signal current, test signal voltage of DC bias signal, test signal current of DC bias signal, DC source voltage.

Note:

- A parameter selected for one of the two parameters cannot be selected for the other parameter. It is
 not possible to set up a combination of test signal voltage and test signal current or one of test signal
 voltage of DC bias signal and test signal current of DC bias.
- The secondary parameter can be set only with SCPI commands.

Trigger mode

Sequential mode: When the E4980B/E4980BL is triggered once, the device is measured at all sweep points. /EOM/INDEX is output only once.

Step mode: The sweep point is incremented each time the E4980B/E4980BL is triggered. /EOM/INDEX is output at each point, but the result of the comparator function of the list sweep is available only after the last /EOM is output.

Comparator function of list sweep: The comparator function enables setting one pair of lower and upper limits for each measurement point.

You can select from: Judge with the first sweep parameter/Judge with the second parameter/Not used for each pair of limits.

Time stamp function: In the sequential mode, it is possible to record the measurement starting time at each measurement point by defining the time when FW detects a trigger as 0 and obtain it later with the SCPI command.

Comparator function

Bin sort: The primary parameter can be sorted into 9 BINs, OUT_OF_BINS, AUX_BIN, and LOW_C_REJECT. The secondary parameter can be sorted into HIGH, IN, and LOW. The sequential mode and tolerance mode can be selected as the sorting mode.

Limit setup: Absolute value, deviation value, and % deviation value can be used for setup.

BIN count: Countable from 0 to 999999.

DC bias signal

Table 29. Test signal voltage

Range	0 V to +2 V
Resolution	0 V / 1.5 V / 2 V only
Accuracy	0.1% + 2 mV (23°C ± 5 °C) (0.1% + 2 mV) × 4 (0 to 18 °C or 28 to 55 °C)

Output impedance: 100Ω (nominal)

Measurement assistance functions

Data buffer function: Up to 201 measurement results can be read out in a batch.

Save/Recall function:

- Up to 10 setup conditions can be written to/read from the built-in non-volatile memory.
- Up to 10 setup conditions can be written to/read from the USB memory.
- Auto recall function can be performed when the setting conditions are written to Register 10 of the USB memory.

Key lock function: The front panel keys can be locked.

GPIB: 24-pin D-Sub (Type D-24), female; complies with IEEE488.1, 2 and SCPI

USB host port: Universal serial bus jack, type-A (4 contact positions, contact 1 is on your left), female (for connection to USB memory only).

USB interface port: Universal serial bus jack, type mini-B (4 contact positions); complies with USBTMC-USB488 and USB 2.0; female; for connection to the external controller.

USBTMC: Abbreviation for USB Test & Measurement Class

LAN: 10/100 BaseT Ethernet, 8 pins (two speed options)

LXI Compliance: Class C (only applies to units with firmware revision A.02.00 or later)

Options

Frequency options

E4980B	20 Hz to 2 MHz	
E4980BL-032	20 Hz to 300 kHz	
E4980BL-052	20 Hz to 500 kHz	
E4980BL-102	20 Hz to 1 MHz	

Table 30. Installable options

Options	E4980B	E4980BL
Power and DC bias enhancement (001)	Installable	Not installable
Handler interface (201)	Installable	Installable
Scanner interface (301)	Installable	Installable

Interface options

- Option 201 (Handler interface)
 - o Adds handler interface.
- Option 301 (Scanner interface): Adds scanner interface.
- Option 710 (No interface)
 - o An option with no interface.
 - o Up to 2 interface options can be installed in the interface connector on the rear panel.
- When no interface is installed, two of the option 710 are installed. When one interface is installed, the
 option number of its interface and one option 710 are installed.

Other options

Option 001 (Power and DC Bias enhancement): Increases test signal voltage and adds the variable DC bias voltage.

Power and DC bias enhancement specification

Increases test signal voltage and adds the variable DC bias voltage function. The Vdc-ldc measurement function is available when the option 001 is installed.

Measurement parameters

The following parameters can be used.

- Lp-Rdc
- Ls-Rdc
- Vdc-ldc

where

Rdc Direct-current resistance (DCR)

Vdc Direct-current voltage

Idc Direct-current electricity

Test signal

Signal level

Table 31. Test signal voltage

Range		0 Vrms to 20 Vrms (test frequency ≤ 1 MHz)0 Vrms to 15 Vrms (test frequency > 1 MHz)	
Resolution		100 μVrms (0 Vrms ≤ − ≤ 0.2 Vrms) 200 μVrms (0.2 Vrms < − ≤ 0.5 Vrms)	
		500 μVrms (0.5 Vrms < − ≤ 1 Vrms) 1 mVrms (1 Vrms < − ≤ 2 Vrms) 2 mVrms (2 Vrms < − ≤ 5 Vrms)	
		5 mVrms (5 Vrms < - ≤ 10 Vrms) 10 mVrms (10 Vrms < - ≤ 20 Vrms)	
Setup accuracy	Normal	± (10% + 1 mVrms) (test signal voltage ≤ 2 Vrms) (test frequency ≤ 1 MHz: spec., test frequency > 1 MHz: typ.)	
	Constant 1	± (10% + 10 mVrms) (Test frequency ≤ 300 kHz, test signal voltage > 2 Vrms) (spec.)	

Table 32. Test signal voltage

Range		0 Arms - 100 mArms	
Resolution		1 μArms (0 Arms ≤ - ≤ 2 mArms) 2 μArms (2 mArms < - ≤ 5 mArms) 5 μArms (5 mArms < - ≤ 10 mArms) 10 μArms (10 mArms < - ≤ 20 mArms) 20 μArms (20 mArms < - ≤ 50 mArms) 50 μArms (50 mArms < - ≤ 100 mArms)	
Setup accuracy	Normal	± (10% + 10 μArms) (test signal current ≤ 20 mArms) (test frequency ≤ 1 MHz: spec., test frequency > 1 MHz: typ.)	
		± (10% + 100 μArms) (test frequency ≤ 300 kHz, test signal current > 20 mArms) (spec.)	
		± (15% + 200 µArms) (test frequency > 300 kHz, test signal current > 20 mArms) (test frequency ≤ 1 MHz: spec., test frequency > 1 MHz: typ.)	
	Constant 1	± (6% + 10 μArms) (test signal current ≤ 20 mArms) (test frequency ≤ 1 MHz: spec., test frequency > 1 MHz: typ.)	
		± (6% + 100 μArms) (test frequency ≤ 300 kHz, test signal current > 20 mArms) (spec.)	
		± (12% + 200 µArms) (test frequency > 300 kHz, test signal current > 20 mArms) (test frequency ≤ 1 MHz: spec., test frequency > 1 MHz: typ.)	

^{1.} When auto level control function is on and no warning message is displayed.

Test signal level monitor function

- Test signal voltage and test signal current can be monitored.
- Level monitor accuracy:

Table 33. Test signal voltage monitor accuracy (Vac)

Test signal voltage ²	Test frequency	Specification
5 mVrms to 2 Vrms	≤ 1 MHz	± (3% of reading value + 0.5 mVrms)
	> 1MHz	± (6% of reading value + 1 mVrms)
> 2 Vrms	≤ 300 kHz	± (3% of reading value + 5 mVrms)
	> 300 kHz	± (6% of reading value + 10 mVrms) ³

When auto level control function is on and no warning message is displayed.
 This is not an output value but a displayed test signal level.
 Typ. when test frequency is > 1 MHz with test signal voltage > 10 Vrms.

Table 34. Test signal current monitor accuracy (lac)

Test signal voltage ²	Test Frequency	Specification
50 μArms to 20 mArms	≤ 1 MHz	± (3% of reading value + 5 μArms)
	> 1MHz	± (6% of reading value + 10 μArms)
> 20 mArms	≤ 300 kHz	± (3% of reading value + 50 µArms)
	> 300 kHz	± (6% of reading value + 100 μArms)

DC bias signal

Table 35. Test signal voltage

Range		–40 V to +40 V
Resolution		Setup resolution: 100 µV, effective resolution:
		 330 µV ± (0 V ≤ − ≤ 5 V)
		 1 mV ± (5 V < − ≤ 10 V)
		• 2 mV ± (10 V < − ≤ 20 V)
		• 5 mV ± (20 V < − ≤ 40 V)
Accuracy	Test signal voltage ≤ 2 Vrms	0.1% + 2 mV (23 °C ± 5 °C) (0.1% + 2 mV) x 4 (0 to 18°C or 28 to 55 °C)
	Test signal voltage > 2 Vrms ²	0.1 % + 4 mV (23 °C ± 5 °C) (0.1% + 4 mV) x 4 (0 to 18 °C or 28 to 55 °C)

Table 36. Test signal currant

Range	–100 mA - 100 mA	
Resolution	Setup resolution: 1 µA, effective resolution:	
	• $3.3 \mu\text{A} \pm (0 \text{A} \le - \le 50 \text{mA})$	
	• 10 μA ± (50 mA < − ≤ 100 mA)	

^{1.} This is not an output value but a displayed test signal level
2. Nominal when test frequency is >1 MHz or test signal voltage is >10 Vrms.

DC bias voltage level monitor Vdc

(0.5% of reading value + 60 mV) × Kt

When using Vdc-ldc measurement: (spec.)

When using level monitor: (typ.)

Kt Temperature coefficient

DC bias current level monitor ldc

(A [%] of the measurement value + B [A]) × Kt

When using Vdc-ldc measurement: (spec.)

When using level monitor: (typ.)

A [%] When the measurement time mode is SHORT: 2%

When the measurement time mode is MED or LONG: 1%

B [A] given below

Kt Temperature coefficient

When the measurement mode is SHORT, double the following value.

Table 37. Test signal voltage ≤ 0.2 Vrms (measurement time mode = MED, LONG)

DC DIAS CUITETIL TANGE INTIDEUATICE TANGE ISST	DC bias	current range	Impedance range	[Ω]
--	---------	---------------	-----------------	-----

	< 100	100	300, 1 k	3 k, 10 k	30 k, 100 k
20 µA	150 µA	30 μΑ	3 μΑ	300 nA	45 nA
200 μΑ	150 µA	30 µA	3 μΑ	300 nA	300 nA
2 mA	150 µA	30 μA	3 µA	3 µA	3 µA
20 mA	150 µA	30 µA	30 µA	30 µA	30 µA
100 mA	150 μA	150 µA	150 μA	150 μA	150 μA

Table 38. 0.2 Vrms < test signal voltage ≤ 2 Vrms (measurement time mode = MED, LONG)

DC bias current range Impedance range $[\Omega]$

	< 100	100, 300	1k, 3 k	10k, 30 k	100 k
20 µA	150 µA	30 µA	3 μΑ	300 nA	45 nA
200 μΑ	150 µA	30 µA	3 μΑ	300 nA	300 nA
2 mA	150 µA	30 μΑ	3 μΑ	3 μΑ	3 µA
20 mA	150 µA	30 μΑ	30 µA	30 µA	30 µA
100 mA	150 µA	150 µA	150 µA	150 µA	150 μA

Table 39. Test signal voltage > 2 Vrms (measurement time mode = MED, LONG)

DC bias current range \qquad Impedance range [Ω]

	≤ 300	1 k, 3 k	10k, 30 k	100 k
20 µA	150 µA	30 μΑ	3 μΑ	300 nA
200 μΑ	150 µA	30 µA	3 µA	300 nA
2 mA	150 µA	30 µA	3 µA	3 μΑ
20 mA	150 µA	30 µA	30 µA	30 µA
100 mA	150 µA	150 µA	150 µA	150 µA

Table 40. Input impedance (nominal)

Input impedance	Conditions
0 Ω	Other than conditions below.
20 Ω	Test signal voltage ≤ 0.2 Vrms, Impedance range ≥ 3 k Ω, DC bias current range ≤ 200 μA
	Test signal voltage ≤ 2 Vrms, Impedance range ≥ 10 kΩ, DC bias current range ≤ 200 μA
	Test signal voltage > 2 Vrms, Impedance range = 100 kΩ, DC bias current range ≤ 200 μA

DC source signal

Table 41. Test signal voltage

Range	–10 V to 10 V
Resolution	1 mV
Accuracy	0.1% + 3 mV (23 °C ± 5 °C) (0.1% + 3 mV) x 4 (0 to 18 °C or 28 to 55 °C)

Table 42. Test signal voltage

nominal)	
I	nominal)

Output impedance: 100 Ω (nominal)

DCR measurement specification

DC resistance (Rdc) accuracy

Absolute measurement accuracy Aa

Absolute measurement accuracy Aa is given as

Equation 15. Aa = Ae + Acal

Aa Absolute accuracy (% of reading value)

Ae Relative accuracy (% of reading value)

Acal Calibration accuracy

Relative measurement accuracy Ae

Relative measurement accuracy Ae is given as

Equation 16. $Ae = [Ab + (Rs /|Rm| + Go \times |Rm|) \times 100] \times Kt$

Rm Measurement value

Ab Basic accuracy

Rs Short offset $[\Omega]$

Go Open offset [S]

Kt Temperature coefficient

Calibration accuracy Acal

Calibration accuracy Acal is 0.03%.

Basic accuracy Ab

Table 43. Basic accuracy Ab.

	100E		0.00
Measurement	time made	Test signal	valtana
Measurement	unie mode	i est siuliai	vollaue

	≤ 2 Vrms	> 2 Vrms
SHORT	1.00%	2.00%
MED	0.30%	0.60%

Open offset Go

Table 44. Open offset Go.

Measurement time mode	Test signal voltage
-----------------------	---------------------

	≤ 2 Vrms	> 2 Vrms
SHORT	50 nS	500 nS
MED	10 nS	100 nS

Short offset Rs

Table 45. Short offset Rs.

Measurement time mode	Test signal voltage	
	≤ 2 Vrms	> 2 Vrms
SHORT	25 mΩ	250 mΩ
MED	5 mΩ	50 mΩ

Effect of cable length (Short offset)

Table 46. Values added to Rs when the cable is extended.

Cable length

1 m	2 m	4 m
0.25 mΩ	0.5 mΩ	1 mΩ

Temperature coefficient Kt

Table 47. Temperature coefficient Kt.

Temperature [°C]	Kt
0 ≤ - < 18	4
18 ≤ - ≤ 28	1
28 < - ≤ 55	4

General Specifications

Table 48. Power source

Rated voltage	100 - 240 VAC	
Voltage range	90 – 264 VAC	
Rated frequency	50 / 60 Hz	
Frequency range	47 – 63 Hz	
Power consumption	Max. 150 VA	

Table 49. Operating environment

Temperature	0 – 55 °C	
Humidity (≤ 40 °C, no condensation)	15% – 85% RH	
Altitude	0 m - 2000 m	

Table 50. Storage environment

Temperature	-20 – 70 °C
Humidity (≤ 60 °C, no condensation)	0% - 90% RH
Altitude	0 m - 4572 m

Outer dimensions: 375 (width) x 105 (height) × 390 (depth) mm (nominal)

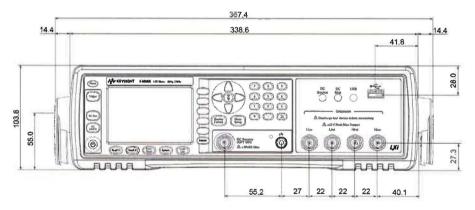


Figure 2. Dimensions (front view, with handle and bumper, in millimeters, nominal)

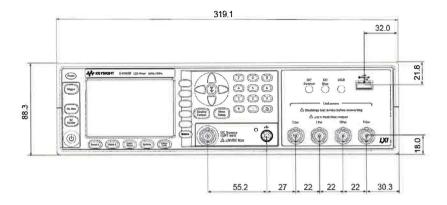


Figure 3. Dimensions (front view, without handle and bumper, in millimeters, nominal)

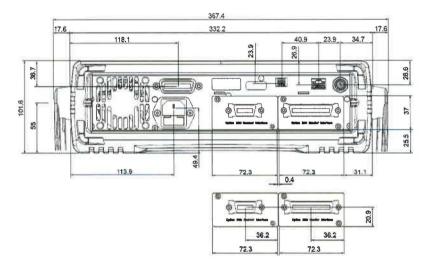


Figure 4. Dimensions (rear view, with handle and bumper, in millimeters, nominal)

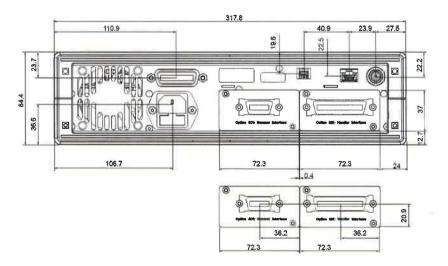


Figure 5. Dimensions (rear view, with handle and bumper, in millimeters, nominal)

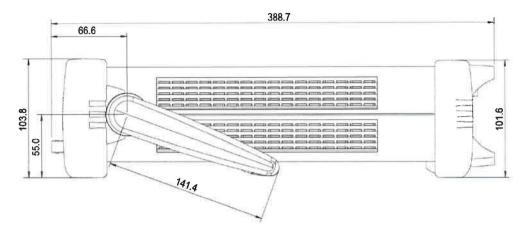


Figure 6. Dimensions (side view, with handle and bumper, in millimeters, nominal)

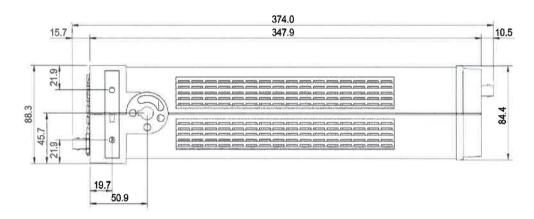


Figure 7. Dimensions (side view, without handle and bumper, in millimeters, nominal)

Weight: 4.9 kg (without Front, Rear Bumper, and Handle)

5.8 kg (with Front, Rear Bumper, and Handle)

Display: LCD, 320 × 240 (pixels), RGB color

Note: Effective pixels are more than 99.99%. There may be 0.01% (approx. 7 pixels) or smaller missing pixels or constantly lit pixels, but this is not a malfunction.

The following items can be displayed:

- Measurement value
- · Measurement conditions
- Limit value and judgment result of comparator
- List sweep table
- Self-test message

EMC 1

Complies with the essential requirements of the European EMC Directive as well as current editions of the following standards (dates and editions are cited in the Declaration of Conformity).

The CE mark is a registered trademark of the European Community (if accompanied by a year, it is the year when the design was proven). This product complies with all relevant directives.

- · IEC 61326-1
- · CISPR 11 Group 1, Class A

UK conformity mark is a UK government owned mark. When affixed to the product is declaring all applicable Directives and Regulations have been met in full.

CAN ICES/NMB-001(A)

This ISM device complies with Canadian ICES-001. Cet appareil ISM est conforme a la norme NMB du Canada.

The RCM mark is a registered trademark of the Australian Communications and Media Authority.

· AS/NZS CISPR 11

South Korean Certification (KC) mark; includes the marking's identifier code: R-R-Kst-xxxxxxx

South Korean Class A EMC declaration:

Information to the user:

This equipment has been conformity assessed for use in business environments. In a residential environment this equipment may cause radio interference.

사용자안내문

이 기기는 업무용 환경에서 사용할 목적으로 적합성평가를 받은 기기로서 가정용 환경에서 사용하는 경우 전파간섭의 우려가 있습니다.

※ 사용자 안내문은 "업무용 방송통신기자재"에만 적용한다.

Safety 1

Complies with the essential requirements of the European Low Voltage Directive as well as current editions of the following standards (dates and editions are cited in the Declaration of Conformity).

This product is designed for use in INSTALLATION CATEGORY II and POLLUTION DEGREE 2 and MEASUREMENT CATEGORY NONE per IEC standards.

This product is intended for indoor use.

IEC/EN 61010-1

The CSA mark is a registered trademark of the CSA International.

- · Canada: CSA C22.2 No. 610610-1
- USA: UL std no. 61010-1

To find a current Declaration of Conformity for a specific Keysight product, go to:

http://www.keysight.com/go/conformity.

Environment

This product complies with the WEEE Directive (2002/96/EC) marking requirements. The affixed label indicates that you must not discard this electrical/electronic product in domestic household waste.

Product Category: With reference to the equipment types in the WEEE Directive Annex I, this product is classed as a "Monitoring and Control Instrumentation" product.

Supplemental Information

Settling time

Table 51. Test frequency setting time

lest frequency (Fm)
Fm≥1 kHz
1 kHz > Fm ≥ 250 Hz
250 Hz > Fm ≥ 60 Hz
60 Hz > Fm

Table 52. Test frequency setting time

lest signal voltage setting time	l est frequency (Fm)	
11 ms	Fm≥1 kHz	
18 ms	1 kHz > Fm ≥ 250 Hz	
26 ms	250 Hz > Fm ≥ 60 Hz	
48 ms	60 Hz > Fm	

Switching of the impedance range is as follows: ≤ 5 ms/ range switching

Measurement circuit protection

The maximum discharge withstand voltage, where the internal circuit remains protected if a charged capacitor is connected to the UNKNOWN terminal, is given below.

Table 53. Maximum discharge withstand voltage

Maximum discharge withstand voltage	Range of capacitance value C of DUT	
1000 V	C < 2 µF	
$\sqrt{2/c} * V$	2 µF ≤ C	

Note: Discharge capacitors before connecting them to the UNKNOWN terminal or a test fixture to avoid damages to the instrument.

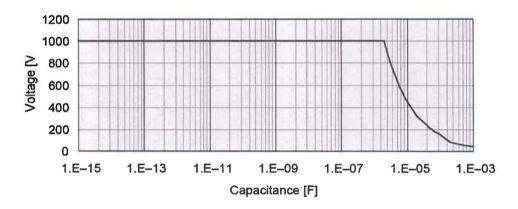


Figure 8. Maximum discharge withstand voltage

Measurement time

Definition

This is the time between the trigger and the end of measurement (EOM) output on the handler interface.

Conditions

Tables 54 and 55 show the measurement time when the following conditions are satisfied:

Normal impedance measurement other than Ls-Rdc, Lp-Rdc, Vdc-ldc

Impedance range mode: hold range mode

DC bias voltage level monitor: OFF

• DC bias current level monitor: OFF

Trigger delay: 0 sStep delay: 0 s

Calibration data: OFFDisplay mode: blank

Table 54. E4980B measurement time [ms] (DC bias: OFF)

Measurement time mode		Test frequency								
		20 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	2 MHz		
1	LONG	480	300	240	230	220	220	220		
2	MED	380	180	110	92	89	88	88		
3	SHORT	330	100	20	7.7	5.7	5.6	5.6		

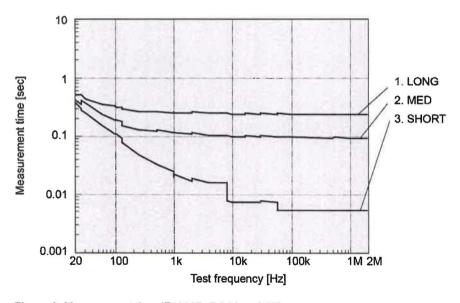


Figure 9. Measurement time (E4980B, DC bias: OFF)

Table 55. E4980BL measurement time [ms] (DC bias: OFF)

Measurement time mode Test frequency

		20 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz
1	LONG	729	423	363	353	343	343
2	MED	650	250	140	122	119	118
3	SHORT	579	149	26	14	12	12

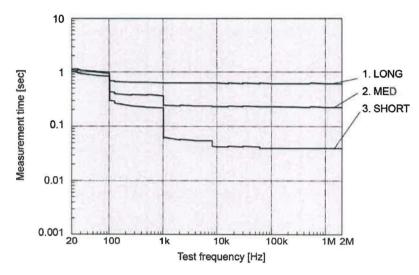


Figure 10. Measurement time (E4980BL)

When DC bias is ON, the following time is added:

Table 56. Additional time when DC bias is ON [ms]

Test frequency

20 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	2 MHz
30	30	10	13	2	0.5	0.5

When the number of averaging increases, the measurement time is given as

Equation 17. MeasTime + (Ave - 1) × AveTime

MeasTime Measurement time calculated based on Table 54, 55 and 56

Ave Number of averaging

AveTime Refer to Table 57

Table 57. Additional time per averaging [ms]

Measurement time mode Test frequency

	20 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	2 MHz
SHORT	51	11	2.4	2.3	2.3	2.2	2.2
MED	110	81	88	87	85	84	84
LONG	210	210	220	220	220	210	210

Table 58. Measurement time when Vdc-ldc is selected [ms]

Measurement time mode Test frequency

Male III	20 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	2 MHz
SHORT	210	46	14	14	14	14	14
MED	210	170	170	170	170	170	170
LONG	410	410	410	410	410	410	410

Add the same measurement time per 1 additional average.

Additional Measurement time when the Vdc and Idc monitor function is ON. Add SHORT mode of Table 58. When using only Vdc or Idc, add a half of SHORT mode of Table 58.

Table 59. Measurement time when Ls-Rdc or Lp-Rdc is selected [ms]

Measurement time mode Test frequency

	20 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	2 MHz
SHORT	910	230	43	24	22	22	22
MED	1100	450	300	280	270	270	270
LONG	1400	820	700	670	660	650	650

Add the three times of Table 57 Additional Time per 1 additional average number.

Display time

Except for the case of the DISPLAY BLANK page, the time required to update the display on each page (display time) is as follows. When a screen is changed, drawing time and switching time are added. The measurement display is updated about every 100 ms.

Table 60. Display time

Item	When Vdc, Idc monitor is OFF	When Vdc, ldc monitor is ON
MEAS DISPLAY page drawing time	10 ms	13 ms
MEAS DISPLAY page (large) drawing time	10 ms	13 ms
BIN No. DISPLAY page drawing time	10 ms	13 ms
BIN COUNT DISPLAY page drawing time	10 ms	13 ms
LIST SWEEP DISPLAY page drawing time	40 ms	
Measurement display switching time	35 ms	_

Measurement data transfer time

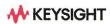

This table shows the measurement data transfer time under the following conditions. The measurement data transfer time varies depending on measurement conditions and computers.

Table 61. Measurement transfer time under the following conditions

Host computer	HP Z440 Workstation, Xeon CPU E5-1620 0 v3 @3.50 GHz
OS	Windows 10 Enterprise, Version 22H2
Display	OFF
Impedance range mode	AUTO (The overload has not been generated.)
OPEN/SHORT/LOAD compensation	OFF
Test signal voltage monitor	OFF

Table 62. Measurement data transfer time [ms]

Interface	Data transfer format	Using: FETC? command (one point measurement)			Using data buffer memory (list sweep measurement)		
		Comparator ON	Comparator OFF	10 points	51 points	128 points	201 points
GPIB	ASCII	1	1	3	7	16	27
	ASCII Long	2	1	3	9	21	33
	Binary	2	2	3	7	15	24
USB	ASCII	1	1	1	2	4	5
	ASCII Long	1	1	1	2	4	6
	Binary	2	2	3	3	3	3
LAN	ASCII	3	3	3	4	8	11
	ASCII Long	3	3	3	6	9	13
	Binary	7	8	8	8	9	9

DC bias test signal current (1.5 V/2.0 V)

Output current: Max. 20 mA

Option 001 (Power and DC Bias enhance): DC bias voltage: DC bias voltage applied to DUT is given as:

Equation 18. $Vdut = Vb - 100 \times Ib$

Vdut [V] DC bias voltage

Vb [V] DC bias setting voltage

Ib [A] DC bias current

DC bias current: DC bias current applied to DUT is given as:

Equation 19. Idut = Vb/(100 + Rdc)

Idut [A] DC bias current

Vb [V] DC bias setting voltage

Rdc $[\Omega]$ DUT's DC resistance

Maximum DC bias current

Table 63. Maximum DC bias current when the normal measurement can be performed.

mpedance range [Ω]	Bias current isolation

	ON	OFF				
		Test signal voltage ≤ 2 Vrms	Test signal voltage > 2 Vrms			
0.1	Auto range mode:	20 mA	100 mA			
1	100 mA	20 mA	100 mA			
10	Hold range mode:	20 mA	100 mA			
100	its values for the	20 mA	100 mA			
300	range.	2 mA	100 mA			
1 k		2 mA	20 mA			
3 k		200 μΑ	20 mA			
10 k		200 μΑ	2 mA			
30 k		20 μΑ	2 mA			
100 k		20 μΑ	200 μA			

When DC bias is applied to the DUT, add the following value to the absolute accuracy Ab.

Table 64. Only when Fm < 10 kHz and |Vdc| > 5 V

SHORT MED, LONG

 $0.05\% \times (100 \text{ mV/Vs}) \times (1 + \sqrt{(100/\text{Fm})})$ $0.01\% \times (100 \text{ mV/Vs}) \times (1 + \sqrt{(100/\text{Fm})})$

Fm [Hz] Test frequency

Vs [V] Test signal voltage

Relative measurement accuracy with bias current isolation

When DC bias Isolation is set to ON, add the following value to the open offset Yo.

Equation 20. $Yo_DCI1 \times (1 + 1/(Vs)) \times (1 + \sqrt{(500/Fm)}) + Yo_DCI2$

Zm [Ω] Impedance of DUT

Fm [Hz] Test frequency

Vs [V] Test signal voltage

Yo_DCI1,2 [S] Calculate this by using Table 65 and 66

Idc [A] DC bias isolation current

Table 65. Yo_DCI1 value

DC bias current range Measurement time mode

1232 4 3 100	SHORT	MED, LONG
20 μΑ	0 S	0 S
200 μΑ	0.25 nS	0.05 nS
2 mA	2.5 nS	0.5 nS
20 mA	25 nS	5 nS
100 mA	250 nS	50 nS

Table 66. Yo_DCI2 value

DC bias current range Measurement time mode

	≤ 100 Ω	300 Ω, 1 k	3 k Ω, 10	30 k Ω, 100 k Ω
20 μΑ	0 S	0 S	0 S	0 S
200 μΑ	0.25 nS	0.05 nS	0 S	0 S
2 mA	2.5 nS	0.5 nS	0 S	3 nS
20 mA	25 nS	5 nS	30 nS	30 nS
100 mA	250 nS	50 nS	300 nS	300 nS

DC bias settling time

When DC bias is set to ON, add the following value to the settling time:

Table 67. DC bias settling time

	Bias	Settling time
1	Standard	Capacitance of DUT × 100 × loge (2/1.8 m) + 3 m
2	Option 001	Capacitance of DUT × 100 × loge (40/1.8 m) + 3 m

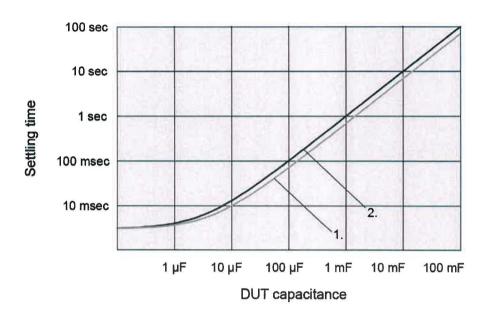


Figure 11. DC bias settling time

Web Resources

Visit our Web sites for additional product information and literature.

- E4980B Precision LCR Meter www.keysight.com/find/E4980B
- E4980BL Precision LCR Meter www.keysight.com/find/E4980BL
- LCR Meters & Impedance Measurement Products www.keysight.com/find/impedance
- RF & MW test accessories www.keysight.com/find/mta

Keysight enables innovators to push the boundaries of engineering by quickly solving design, emulation, and test challenges to create the best product experiences. Start your innovation journey at www.keysight.com.

Annex 3

Affidavit according to § 6 paragraph 4 of the Act No. 134/2016 Coll.

Public Contract name:	Precision LCR meters

Bidder / Supplier

Registered company name / Trade name / Name:	H TEST a.s.
Registered Office:	Na Hřebenkách 1206/25, 150 00 Praha 5, Czech Republic
(Company) Identification No.:	25784480

The Supplier of the above-mentioned Public Contract undertakes to:

- a) ensure compliance with all labour law regulations (concerning remuneration, working hours, rest periods between shifts, paid overtime), as well as regulations concerning employment and safety and health protection for the entire duration of the contractual relationship established on the basis of this Public Contract, to all persons involved in the performance of the contract (regardless of whether the activities will be performed by the Supplier himself or his subcontractors) and
- b) ensure compliance with legal regulations in the field of environmental law, which meets the objectives of environmental policy related to climate change, use of resources and sustainable consumption and production. The Supplier must therefore take all measures that can reasonably be required of him to protect the environment and reduce the damage caused by pollution, noise and other activities, and must ensure that emissions, soil pollution and waste water from his activities do not exceed the values laid down in the relevant legislation.

At the same time, the Supplier acknowledges that a breach of the above obligations may be a reason for the Contracting Authority to withdraw from the Purchase Contract in accordance with its relevant provisions.

Signature of the person authorized to represent the Supplier:			
Place:	Prague		
First name, Surname, Position in the company:	Ing. Václav Haasz, Chairman of the Board		
Signature:			

