

Nerudova 3, 118 50 Prague 1 tel.: +420 251 108 130, fax: +420 251 108 225 www.czechaid.cz

CONTRACT REF. NO. 282226/2024-CRA

BETWEEN

CONTRACT OWNER:

Represented by:

Registered office:

Phone: E-mail: Company ID no.: Bank connection:

Account number: (hereafter "Client")

and

SUPPLIER:

Represented by: **Registered office:**

Tax ID no.: Bank connection: Account number: SWIFT code: Contact person: Phone: E-mail:

(hereafter the "Supplier")

CZECH REPUBLIC – CZECH DEVELOPMENT AGENCY

Mgr. Zbyněk Wojkowski - head of the Project **Realization Department** Nerudova 3, 118 50 Prague 1

Person authorised in contractual matters: Mr. Josef Darebný

75123924 Czech National Bank, Na Příkopě 28, Prague 1, **Czech Republic** 0000 - 72929011/0710

HY Engineering PLC

Mr. Henok Tsegaye – General Manager Hawassa, Tabore Sub-city, Hitata kebele, P.O. Box 538, Ethiopia

0057735915

Mr. Henok Tsegaye

MANDATE CONTRACT

1. SUBJECT OF THE CONTRACT

- 1.1. The Supplier hereby undertakes to perform the mandate as technical expert. The mandate is specified in Article 2. of this Contract. The Supplier undertakes to perform the mandate duly and carefully according to his abilities.
- 1.2. Client hereby undertakes to pay the Supplier duly and in time for the performance of the mandate the agreed remuneration in accordance with terms and conditions stated in this Contract.

2. MANDATE

- 2.1. The Supplier will provide overall verification of the functionality of technical solution for Awaye Keraro site which was part of an identification of public contract "Introduction of a sustainable potable water supply system in the Bura, Dale and Bona Zuriya woredas".
- 2.2. The Supplier, on behalf of the Client, shall provide detailed verification of functionality of previously conducted construction design of the gravity water supply system in Awaye Keraro (Annex No. 2). The main output of this task shall be detailed design report consisting of:
 - A. <u>Design Report</u> prepared on the basis of the preliminary study, topographic and baseline surveys, including:
 - o summary;
 - baseline assessment (population census should be provided by Woreda Water Office, existing water sources, location and accessibility, administration);
 - o design objectives, methodology and criteria;
 - demand assessment (population growth and projection, water demand analysis for upcoming 20 years etc.);
 - design of the water supply system and its components: water source requirement; reservoir capacity; distribution pipe lines, specification of fittings; location of anchor blocks, valve chambers and water points/taps etc.;
 - \circ implementation plan.
 - B. <u>Hydraulic Calculation</u>
 - C. <u>Specification and Bill of Quantity</u>:
 - project summary;
 - supply and installation of pipes and fittings;
 - valve chambers for reservoir and pipe network;

- construction of reservoir, water points (with six faucets, water point for Health Post and school water point with sinks; depends on A)
- specification of pressure break tank, anchor blocks;
- $\circ~$ all other components of the water supply system.
- D. <u>Cost Breakdown</u>
- E. Design Drawings Album:
 - general map of the project area;
 - general layout of distribution system;
 - distribution system profiles;
 - reservoir layout with fence (roof plan and section);
 - detail pipe connection at the reservoir;
 - distribution system fittings detail;
 - water point with six faucets and fence (plan, section and schematic pipe connection);
 - \circ $\:$ water point for Health post (plan, section and schematic pipe connection);
 - school water point with sinks (plan, section and schematic pipe connection);
 - pressure break tank;
 - valve chamber;
 - \circ anchor block;
 - other standard typical drawings (pipe trench, river and road crossing, air release etc.).
- F. Letter of acceptance
 - Letter of acceptance should be delivered from the respective authorities (namely: Woreda Water Office, Sidama Regional Bureau of Water, Mines and Energy) in regards to the planned design of the project.
- 2.3. The Supplier should specifically fulfill following tasks (1-12) at Awaye Keraro site:

1) To collect initial yields measurement at Godo 1, Godo 2 and Dassa Dashole between August and October with a minimum time interval 45 days. To verify information from local community about yield fluctuation during the year.

2) To collect water sample from each spring at each measurement and conduct physio chemical laboratory tests (pH, conductivity, TDS, turbidity, total chlorine, total, calcium and magnesium hardness, total, bicarbonate, carbonate and hydroxide alkalinity, dissolved NH₃, NH₄⁺, Na⁺, K⁺, Ca⁺, Mg⁺, Fe, Cu²⁺, Mn²⁺, Cr⁶⁺, Cl⁻, F⁻, Br₂, NO²⁻, NO³⁻, SO₄²⁻, PO₄³⁻, HCO₃⁻ and CO₃²⁻) and measure groundwater temperature on site; total 6 samples

3) To propose a specific way of capturing springs Godo 1, Godo 2 and Dassa Dashole

4) To check all the remaining existing springs in the vicinity (13) and verify information from local community about yield fluctuation during the year.

5) For springs that can be used quantitatively, take water samples for laboratory tests (pH, conductivity, TDS, turbidity, total chlorine, total, calcium and magnesium hardness, total, bicarbonate, carbonate and hydroxide alkalinity, dissolved NH₃, NH₄⁺, Na⁺, K⁺, Ca⁺, Mg⁺, Fe, Cu²⁺, Mn²⁺, Cr⁶⁺, Cl⁻, F⁻, Br₂, NO²⁻, NO³⁻, SO₄²⁻, PO₄³⁻, HCO₃⁻ and CO₃²⁻) and measure groundwater temperature on site (3 samples/analyses in total)

6) To propose a specific way of capturing quantitatively usable springs, determine whether they can potentially be connected to the system or whether it is appropriate/meaningful to capture them for local use only

7) To update and complete the positions of Water Points and update the positions of the reservoirs

8) To carry out geodetic surveying of all individual elements of the system - target the positions of all springs (16), reservoirs and water points

9) To establish current/calculate future requirements for the amount of water in Cham and Bela (people, livestock, ...)

10) To estimate excess balance (what will flow into the 100m³ reservoir in Badalo) of captured springs (Godo 1, Godo 2 and Dassa Dashole) and others, usable for connection to the system in relation to the need in Cham and Bela

11) To verify the state (technical, functionality) of the distribution network in Badalo near the 100m³ reservoir, the current and expected state of water supply (need, sufficiency) in Badalo

12)To verify existence/functioning of WASHCO in Cham, Bele and Badalo

2.4. The Supplier undertakes to perform the mandate exclusively through the employees of the Supplier without using third persons (subcontractors) for any tasks.

3. DURATION

3.1. The period of performance of the Contract is August to November₁5th 2024 (approximately 3 months).

4. CONTRACT PRICE

4.1. The Client shall reimburse the Supplier for performance of the mandate in the amount of USD 21.275 USD (in words: ten thousand dollars) including VAT (hereafter "contract price"). The contract price is accepted by both parties as non-exceedable. The contract price covers all the costs arising for the Supplier in connection with the performance of the mandate. The Supplier is responsible for the correct determination of the VAT rate.

4.2. The contract price shall be reimburse as a total after delivery of the complete Detail Design verification within the scope of the Supplier's mandate specified in Article 2.1 (2.2 respectively):

	Task	Unit	Qua ntiti es	Remuneration including VAT
Α	Delivery of one Detail Design document (PDF and Word/EXCEL/DWG format) on 5 th November consisting of tasks described in 2.1 (A-E) and performed tasks described in 2.2 (1- 12)	report	1	8 500 USD
В	Hydraulic Calculation	calculation	1	3 500 USD
С	Specification and Bill of Quantity	BoQ	1	3 800 USD
D	Cost Breakdown	cost breakdow n	1	1 200 USD
E	Design Drawings Album	drawings	1	4 200 USD
F	Letter of acceptance	letter	1	75 USD
				21, 275 USD

Above stated remuneration includes VAT and all costs, expenditures, services and additional performances necessary for performance of the mandate.

4.3. The Supplier shall send to the Client request for payment accompanied by invoice issued by the Supplier after fulfillment of all tasks specified in article 2 to this

contract. The request shall always be accompanied by corresponding documents for the respective tasks conducted, which were approved by the Client. The request for payment shall be submitted to the Client and approved by the Client before the payment will be processed.

- 4.4. In the invoice the Supplier shall state the project name: Awaye Keraro Water Supply Project, invoice number, date of issue, subject of invoicing, name, address, banking connection and signature.
- 4.5. The maturity period is 21 days from the delivery of the invoice to Client. The date of payment means the day when the payment is subtracted from the Client's account. The invoice must have all the essentials required of such document. Client may return an invoice to the Supplier within the maturity date without making any payment if the invoice contains incorrect data.
- 4.6. The payments will only be processed in USD.
- 4.7. Figures in the Supplier's invoices will be in USD.
- 4.8. The above mentioned amounts will be paid only by bank transfer to the following account opened in the name of the Supplier:

Bank connection:	Bank	of	Abyssinia
Account No.:		136	3.29
SWIFT code:	5.5		

5. OBLIGATIONS OF THE SUPPLIER

- 5.1. The Supplier undertakes to perform the mandate personally and in accordance with relevant legislation and instructions and wishes of the Client if they aren't in conflict with the legislation. The Supplier is not allowed to use sub-contractor to perform the mandate.
- 5.2. The Supplier shall observe any applicable laws in the execution of this Contract, and to hold the Client harmless of any claims from third parties (including State authorities) related to the execution of this Contract.
- 5.3. The Supplier shall transfer intellectual property right to the Client in accordance with this Contract.
- 5.4. In case that the Supplier fails to perform the mandate without justified excuse for more than 10 day, the Client has right for contractual penalty in the amount of 1000 USD. The contractual penalty is due by the day when the Client exercises the right for contractual penalty.
- 5.5. The Supplier is not liable for any delay in the consequence of Client's failure to give assistance under Article 6. hereof.
- 5.6. The Supplier shall provide free of charge cooperation in case of additional changes and adjustments to the documentation delivered to the Client for the period of six months after the handover.

6. OBLIGATIONS OF THE CLIENT

- 6.1. Client undertakes to provide to the Supplier full cooperation necessary for the performance of the mandate. Client shall especially:
- a) provide all information and material related to the subject matter of this Contract and needed for adequate performance of the mandate by the Supplier;
- b) in the case of necessity delegate the project manager and other Client deputies who will cooperate with the Supplier during the performance of the mandate and are qualified to comment on the situation, issues and requirements related to the execution of this Contract.

7. LICENSES AND INTELLECTUAL PROPERTY, CONFIDENTIALITY

- 7.1. The Supplier undertakes to protect the Client against all third-party actions for breach of copyright or other intellectual property rights, which might arise out of this Contract.
- 7.2. The Supplier declares that he is the rightful owner of the intellectual rights to all information supplied by virtue of this Contract, and that he is entitled to sell or transfer those rights in accordance with the terms of this Contract. If intellectual rights are the property of third parties, the Supplier shall request those third parties to confirm to the Client in writing and within four weeks following signature of the Contract, that the Supplier is indeed entitled to sell or dispose of those rights in accordance with the terms of this Contract.
- 7.3. If the Supplier creates work which is subject to author's rights and this work is related to the performance of the contract by the Supplier, the Supplier hereby grants the license to use the work in accordance with § 12 of the Act. No. 121/2000 Coll.
- 7.4. All information obtained by the Supplier during performance of this Contract from Client directly or through the project assistant are considered confidential. The Supplier shall not disclose such information to any other person if Client does not state otherwise.
- 7.5. Client and the Supplier shall exchange all information on any industrial property right that could impede the performance of the Contract.

8. DOCUMENTATION

- 8.1. Thereafter, the Supplier shall provide free of charge to Client any update of the documentation provided by the Supplier during the term of this Contract.
- 8.2. The Supplier shall permit Client to reproduce all or a part of the documentation provided, for its internal needs, directly connected with use by its personnel. Client shall ensure that any indication concerning the intellectual property rights appearing on the original copies is reproduced.

9. QUALITY AND STANDARDS

- 9.1. The Supplier undertakes to perform the Contract to the highest professional standards. The Supplier shall have sole responsibility for complying with any legal obligations incumbent on him, notably those resulting from employment, tax and social legislation.
- 9.2. The Supplier shall have sole responsibility for taking the necessary steps to obtain any permit or license required for performance of the Contract under the laws and regulations in force at the place where the tasks assigned to him are to be executed.
- 9.3. The Supplier shall neither represent Client nor behave in any way that would give such an impression. The Supplier shall inform third parties that he does not belong to the Czech public service.
- 9.4. The Supplier shall have sole responsibility for the tasks assigned to him.
- 9.5. If the Supplier should fail to perform his obligations under the Contract in accordance with the provisions laid down therein, Client may (without prejudice to its right to terminate the Contract) reduce or recover payments in proportion to the scale of the failure. Client can only exercise this right after the Supplier does not repair such failure within 15 days from notification by Client.
- 9.6. Client can monitor compliance with the standards.

10. LIABILITY

- 10.1. Client shall not be liable for damage sustained by the Supplier in performance of the Contract except in the event of willful misconduct or gross negligence on the part of Client.
- 10.2. The Supplier shall be liable for any loss or damage caused by himself in performance of the Contract. Client shall not be liable for any act or default on the part of the Supplier in performance of the Contract.
- 10.3. The Supplier shall provide compensation in the event of any action, claim or proceeding brought against Client by a third party as a result of damage caused by the Supplier in performance of the Contract.
- 10.4. The Supplier shall take out insurance against risks and damage relating to performance of the Contract if required by the relevant applicable legislation. He shall take out supplementary insurance as reasonably required by standard practice in the field. A copy of all the relevant insurance Contracts shall be sent to Client should it so request.

10.5. The Supplier declares:

- that he has not made and will not make any offer of any type whatsoever from which an advantage can be derived under the Contract,
- that he has not granted and will not grant, has not sought and will not seek, has not attempted and will not attempt to obtain, and has notaccepted and will not accept, any advantage, financial or in kind, to or from any party whatsoever, where such advantage constitutes an illegal practice or involves corruption, either directly or indirectly, inasmuch as it is an incentive or reward relating to performance of the Contract.

11. TAXATION

11.1 The Supplier shall have sole responsibility for compliance with the tax laws, which apply to him. Failure to comply shall make the relevant invoices invalid.

12. FORCE MAJEURE

- 12.1. Force majeure shall mean any unforeseeable and exceptional situation or events beyond the control of the Contracting parties which prevents either of them from performing any of their obligations under the Contract, was not due to error or negligence on their part or on the part of the Supplier and could not have been avoided by the exercise of due diligence. Defects in equipment or material or delays in making it available, labor disputes, strikes or financial problems cannot be invoked as force majeure unless they stem directly from a relevant case of force majeure.
- 12.2. If either Contracting party is faced with *force majeure*, it shall notify the other party without delay by registered letter with acknowledgment of receipt or equivalent, stating the nature, likely duration and foreseeable effects.
- *12.3.* Neither Contracting party shall be held in breach of its Contractual obligations if it has been prevented from performing them by *force majeure*. Where the Supplier is unable to perform his Contractual obligations owing to *force majeure*, he shall have the right to remuneration only for tasks actually executed.
- 12.4. The Contracting parties shall take the necessary measures to reduce damage to a minimum.

Nerudova 3, 118 50 Prague 1 tel.: +420 251 108 130, fax: +420 251 108 225 www.czechaid.cz

13. TERMINATION OF THE CONTRACT

- 13.1. Client reserves the right to terminate this Contract by written notice and the Supplier undertakes to repay the expenses in the following cases:
- If the Supplier fails to perform the mandate under the terms of this Contract, or
- If the Supplier fails to fulfill any of the terms of this Contract, or
- Where Client seriously suspects the Supplier of fraud, corruption, involvement in a criminal organization or any other illegal activity detrimental to Client' financial interests.
 - 13.2. With the exception of fraud, corruption, involvement in a criminal organization or any other illegal activity detrimental to Client' financial interests, this right can only be exercised by Client after such failure is not repaired by the Supplier within 15 days from notification by Client. In case of exercise of this right of the Supplier, the Contract ends on the day in which the notice was delivered to the Supplier. If the Supplier fails to repair above stated failures within 15 days from notification, the Client has right for contractual penalty in the amount of 1000 USD. The contractual penalty is due by the day when the Client exercises the right for contractual penalty.
 - 13.3. The Client has also right to revoke the mandate without stating reason. In such case the Contract end on the day in which the revocation was delivered to the Supplier and the Client undertakes to pay to the Supplier respective part of the remuneration.
 - 13.4. In case of premature termination of the Contract by the Client by notice because of fraud, corruption or involvement in a criminal organization or withdrawal from the Contract or premature termination of the Contract by the Supplier, the Supplier undertakes to pay to the Client contractual penalty in the amount of 1000 USD. The contractual penalty is due by the day when the Client exercises the right for contractual penalty.
 - 13.5. In case of *force majeure*, notified in accordance with article 13.1., either Contracting party may terminate the Contract, where performance of mandate cannot be ensured in accordance with Article 3. of this Contract.

14. SUSPENSION OF THE CONTRACT

14.1 Without prejudice to Client's right to terminate the Contract, Client may at any time and for any reason suspend execution of the Contract, pending orders or specific Contracts or any part thereof. Suspension shall take effect on the day the Supplier receives notification by registered letter with acknowledgment of receipt or equivalent, or at a later date where the notification so provides. Client may at any time following suspension give notice to the Supplier to resume the mandate suspended. The Supplier shall not be entitled to claim compensation on account of suspension of the Contract, of the orders or specific Contracts, or of part thereof.

Nerudova 3, 118 50 Prague 1 tel.: +420 251 108 130, fax: +420 251 108 225 www.czechaid.cz

15. AMENDMENTS

15.1. Any amendment to this Contract must be in writing, signed by the partieshereto; failing which such amendment shall have no effect and be void.

16. Applicable law and settlement of disputes

- 16.1. The Contract shall be governed by the national substantive and procedural law of the Czech Republic.
- 16.2. In the event of a dispute or a suspected or actual violation of the terms and conditions hereof they shall at first try in good faith together to settle the matter between themselves and only after this option turns out unproductive, they shall bring the matter before a court.
- 16.3. Any dispute between the parties resulting from the interpretation or application of this Contract, which cannot be settled amicably, shall be brought before the courts of the Czech Republic. The District Court of Prague 1 shall be competent court of first instance in the matters of this Contract.

17. PERSONAL DATA PROTECTION

- 17.1. The Client will hand over to the Supplier personal data necessary for due performance of this Contract (hereafter "Personal Data") and the Supplier will be in the position of data processor within meaning of EU General Data Protection Regulation 2016/679 (hereafter "GDPR"). Personal Data which will be handed to the Supplier are specified in Annex No. 6 to this Contract.
- 17.2. The Personal Data will be processed by the Supplier only within Contract period.
- 17.3. The Supplier undertakes to comply with all obligations set out in the personal data protection laws, mainly GDPR or Act No. 110/2019 Coll., Personal Data Processing Act, and keep personal data obtained from the Client confidential.
- 17.4. The Supplier undertakes to process Personal Data only on documented instructions of the Client and will inform the Client about any requirements for the transfer of Personal Data to a third country or international organization, unless the law provides that such information is not possible for important reasons of public interest.
- 17.5. The Supplier undertakes to ensure that person entitled to process Personal Data for him will keep Personal Data confidential based on law or contract.
- 17.6. The Supplier undertakes to keep conditions stated by Client for engagement of other data processor, mainly to choose other data processor with due care and request such guarantees from him, which will secure personal data protection at least in scope corresponding to level of protection of the Supplier and terms of GDPR. Engagement of other data processor is possible only with written consent of the Client.
- 17.7. The Supplier undertakes to cooperate with the Client in order to fulfil his duties which arise from request of personal data subjects regarding exercise of his rights

and negotiations with supervisory authority.

- 17.8. The Supplier undertakes that personal data won't be misused for his gain or gain of third person.
- 17.9. The Supplier hereby undertakes to take reasonable steps to ensure the reliability of any employee, agent or contractor of any other person who may have access to the Client's personal data, ensuring in each case that access is strictly limited to those individuals who need to know or access the relevant Client's personal data, for the necessary purposes of this Contract and to comply with applicable laws as GDPR or Act No. 110/2019 Coll., Personal Data Processing Act. The Supplier undertakes to ensure that all such individuals will be subject to confidentiality undertakings or professional or statutory obligations of confidentiality.
- 17.10. Taking into account the costs of implementation and the nature, scope, context and purposes of processing as well as the risks and severity for the rights and freedoms of natural persons, the Supplier shall in relation to the Client's personal data implement appropriate technical and organizational measures to ensure a level of security appropriate to that risk, including, as appropriate, the measures.
- 17.11. The Supplier undertakes to cooperate with the Client on data protection assessment, security of Personal Data and reporting of personal data security breach.
- 17.12. The Supplier shall promptly notify the Client about receiving request from a data subject.
- 17.13. The Supplier shall notify the Client without undue delay and within 48 hours at the latest upon Supplier becoming aware of a Client's Personal data breach providing Client with sufficient information to allow the Client to meet any obligations to report or inform data subjects or respective state bodies.
- 17.14. Supplier shall provide reasonable assistance to the Client with any data protection impact assessments, and prior consultations with supervising authorities or other competent data privacy authorities.
- 17.15. The Supplier will respect Client instructions. If the instruction is in contradiction with GDPR or respective laws, the Supplier shall notify the Client about such contradiction.
- 17.16. After termination of this Contract the Supplier will dispose of Client Personal Data or hand over all Client Personal Data to the Client, unless it is possible to keep Personal Data in accordance with GDPR.
- 17.17.If the Supplier gets personal data from personal data subject which he will hand over to the Client, he is obliged to get before processing such personal data written consent with data processing of the personal data subject or his legal representative in case that data subject is a child and this written consent hand over to the Client without undue delay if it isn't possible to process personal data in accordance with GDPR without consent of personal data subject. The consent must be given on consent form which is Annex No. 7 to this Contract.

Nerudova 3, 118 50 Prague 1 tel.: +420 251 108 130, fax: +420 251 108 225 www.czechaid.cz

18. FINAL PROVISIONS

- 18.1. The Parties acknowledge that this Contract will be published in the contracts register in accordance with Act No. 340/2015 Coll., on the contracts register, as the Client is a liable party within the meaning of the act, and the Parties agree with the publication hereof. Publication shall be arranged by the Client within 30 days from signature of the Contract by both Parties.
- 18.2. The Contract becomes valid on the day of its signature and effective upon its publication in the register of contracts. The Client shall inform the Supplier about date of publishing in the contract register within two working days from the date of publishing via email message sent to the email address of the Supplier stated in this Contract.
- 18.3. This Contract is drawn up in three counterparts from which the Client will receive two counterparts and the Supplier will receive one counterpart.

List of Annexes:

Annex No. 1: Commercial Registration Certificate of the Supplier

Annex No. 2: Detail Design Awaye Keraro

 For and on behalf of the Client
 For and on behalf of the Supplier

 Signed in Prague on
 Signed in Hawassa on

 Mgn. Zhuměk Woikowski
 Mgn. Hanak Taagawa

Mgr. Zbyněk Wojkowski head of the Project Realization Department of Czech Development Agency Mr. Henok Tsegaye General Manager of the HY Engineering PLC

2-435

!

1

ማብርና፣ አደን፣ የደን ልማትና ዓሳ ማስገር፣ የፋይናንስ፣ ኢንሹራንስ የሪል ስቴትና የንግድ ሥራዎች የጅምላ እና የቸርቻሮ ንግድ፣ የጥንና፣ የሆቴልና ሬስቶራንት፣ የአስመጪነትና የላኪነት P: 06.97 1307-6-683

የተራንስፖርት፣ የመጋዘንና የኮሙኒኬሽን ሥራዎች የማህበረሰብ:ማህበራዊና የማል አንልማሎቶት

77.4.hF679

1 : AGRICULTURE, HUNTING, FORESTRY AND FISHING 8. FINANCIAL INTERMEDIATION, INSURANCE, REAL ESTATE AND BUSINE SERVICES

6 : WHOLESALE AND RETAIL TRADE; REPAIR, HOTELS AND RESTAURANT IMPORT AND EXPORT BUSINESSES

Ī

I.

5 : CONSTRUCTION

7: TRANSPORT, STORAGE AND COMMUNICATION ACTIVITIES 9 : COMMUNITY, SOCIAL AND PERSONAL SERVICES

3 : MANUFACTURING

AWAYO-KERARO KEBELE WATER SUPPLY PROJECT DETAILED DESIGN REPORT CLIENT: CZECH DEVELOPMENT AGENCY

CZECH REPUBLIC—CZECH DEVELOPMENT AGENCY

IMPROVING QUALITY OF LIFE BY ENSURING AVAILABILITY AND SUSTAINABLE MANAGEMENT OF WATER RESOURCES IN SIDAMA ZONE

DETAIL DESIGN REPORT OF AWAYO KERARO KEBELE COMMUNITY WATER SUPPLY AND SANITATION PROJECT (BONA ZURIA WOREDA, SIDAMA ZONE)

HY Engineering Consultancy PLC Tel:

> P.o.Box: 229 Hawassa, Ethiopia

August 2019

HAWASSA, ETHIOPIA

Table of Contents

ABOUT THE DOCUMENT	V
EXECUTIVE SUMMARY	v
ABBREVIATIONSV	/11
LIST OF TABLESV	
LIST OF FIGURES	IX
CHAPTER 1	. 1
INTRODUCTION	. 1
1.1 GENERAL	. 1
1.2 LOCATION AND ACCESSIBILITY	. 2
1.3 TOPOGRAPHY, HYDROLOGY AND HYDRO GEOLOGY	3
1.4 Socio Economic Condition	3
1.4.1 Education Service	4
1.4.2 Health Condition	4
1.4.3 Business Enterprises	4
1.5 Project target area and Beneficiaries	. 4
1.5.1 Project Area	4
1.5.2 Project Beneficiaries	4
CHAPTER 2	. 6
OBJECTIVES OF THE PROJECT	. 6
2.1 The main objective of the project	. 6
2.2 Specific objectives of the project	6
CHAPTER 3	. 7
MATERIALS, METHODOLOGY AND CRITERIA OF DESIGN	. 7
3.1 MATERIALS AND SOFTWARE	. 7
3.2 Methodology of Study	. 7
3.3 Study Approaches	. 7
3.4 Units and Standards	8
3.5 Design parameters & Criteria	. 8

H	ENGINEERING	PL	c.
6	DEPARTMENT OF CONSULTANCY ON WATER RESOURCE DEVELOPMENT, HAWASSA	0	0 1 TM

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report Client: Czech Development Agency

3.5.1 Design Criteria	
3.5.2 Principal Design Criteria	9
CHAPTER 4	
WATER DEMAND ASSESSMENT	
4.1 GENERAL	
4.2 Population Forecasting	
4.2.1 Present population	
4.2.2 Population Projection	
4.2.3 Population characteristics	
4.2.4 Household Characteristics	
4.3 WATER DEMAND ANALYSIS	
4.3.1 Domestic Water Demand	
4.3.2 Non-Domestic Water Demand	
4.3.3 Demand Variations	
4.3.4 Summary of Water Demand	
CHAPTER 5	
DESIGN OF WATER SUPPLY SYSTEM	
5.1 Introduction	
5.2 Water source	
5.2.1 Water source location	
5.2.2 Water source capacity	
5.2.3 Water Quality	
5.3 Reservoir/ Wet Well	
5.4 WATER TRANSMISSION & DISTRIBUTION PIPE SYSTEM DESIGN	23
5.4 WATER TRANSMISSION & DISTRIBUTION PIPE SYSTEM DESIGN	
 5.4 WATER TRANSMISSION & DISTRIBUTION PIPE SYSTEM DESIGN	
 5.4 WATER TRANSMISSION & DISTRIBUTION PIPE SYSTEM DESIGN	
 5.4 WATER TRANSMISSION & DISTRIBUTION PIPE SYSTEM DESIGN	23 24 28 29 29 29
 5.4 WATER TRANSMISSION & DISTRIBUTION PIPE SYSTEM DESIGN	23 24 28 29 29 29 29
 5.4 WATER TRANSMISSION & DISTRIBUTION PIPE SYSTEM DESIGN 5.4.1 Design of Gravity distribution Pipe Network 5.3.2 Depth of pipe line in the ground 5.3.3 Valves 5.3.4 Fittings 5.3.5 Water point/Public taps 5.3.6 Anchor blocks 	23 24 28 29 29 29 29 29 29 29
 5.4 WATER TRANSMISSION & DISTRIBUTION PIPE SYSTEM DESIGN 5.4.1 Design of Gravity distribution Pipe Network 5.3.2 Depth of pipe line in the ground 5.3.3 Valves 5.3.4 Fittings 5.3.5 Water point/Public taps 5.3.6 Anchor blocks 5.3.7 Manhole 	23 24 28 29 29 29 29 29 29 29 29 29 29 30
 5.4 WATER TRANSMISSION & DISTRIBUTION PIPE SYSTEM DESIGN 5.4.1 Design of Gravity distribution Pipe Network 5.3.2 Depth of pipe line in the ground 5.3.3 Valves 5.3.4 Fittings 5.3.5 Water point/Public taps 5.3.6 Anchor blocks 5.3.7 Manhole 	23 24 28 29 29 29 29 29 29 29 30 32

H	ENGINEERING	PL	с.
6	DEPARTMENT OF CONSULTANCY ON WATER RESOURCE DEVELOPMENT, HAWASSA	0	0 1 TM

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report Client: Czech Development Agency

Chefit. Czech Develophient Agency
CHAPTER 7
BILL OF QUANTITIES
CHAPTER 8
CONSTRUCTION DRAWINGS
CHAPTER 9
ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT95
9.1 General
9.2 Negative impact and its mitigation measures95
9.3 Positive impacts of the projects96
ANNEXURE
Annexure I: Cost Breakdown
Annexure II: Structural design document97
Annexure III: Hydraulic analysis/ Water CAD report97
Annexure IV: Baseline survey questionnaire97
Annexure V: Summary of water Demand97
Annexure VI: Environmental and social screening97
Annexure VII: Specific Location of System Components

ABOUT THE DOCUMENT

This detail study and design of 'Awayo Keraro Kebele' Community Water Supply and Sanitation Project was prepared by HY Engineering consultant team in consultation with 'Sidama' Zones Water, Mines and Energy Department (SZWMED), 'Bona-Zuria Woreda' Water Office and beneficiary communities.

The report was prepared accordance with the contract agreement made with the client, Czech Republic—Czech Development Agency for the program "Improving Quality of Life by Ensuring Availability and Sustainable Management of Water Resources in Sidama Zone".

Program: "Improving Quality of Life by Ensuring Availability and Sustainable Management of Water Resources in Sidama Zone"

Project Area: 'Bona Zuria Woreda', 'Sidama' Zone, South Nations Nationalities and People Regional State (SNNPRS), Ethiopia

Project Name: 'Awayo Keraro' Community Water Supply and Sanitation Project Client: Czech Republic—Czech Development Agency

Represented by :(Ing. Pavel Frelich, Director) Address: Nerudova 3, 118 50 Praha 1, Czech Republic

Consultant:

HY Engineering consultancy Plc Tel: E-mail: Post Office Box: 229 Hawassa, Ethiopia

August, 2019

Hawassa, Ethiopia

EXECUTIVE SUMMARY

This report presents a detail study and design of 'Awayo Keraro Kebele' Community Water Supply and Sanitation project. The study was conducted by HY Engineering consultancy Plc in consultation with SZWMED and 'Awayo Keraro Kebele' community, as per the contract agreement made with Czech Republic—Czech Development Agency for the program "Improving Quality of Life by Ensuring Availability and Sustainable Management of Water Resources in Sidama Zone". The objective of the project is to improve access to safe, adequate and sustainable water supply service from reliable sources at a reasonable distance from dwelling for the rural communities and public institutions.

The detail study and design report for Construction of New Water Supply Systems in 'Awayo Keraro Kebele'' Community, 'Bona Zuria Woreda' of 'Sidama' Zone has been carried out based on the preliminary designs document prepared by SZWMED. This report comprises and explains the baseline survey methodologies, the detail study and design approaches, hydraulic analysis, bill of quantity, material specification and cost estimation, standard engineering drawings and avoidance of adverse environmental and social impacts during construction and operation of the water distribution system of the proposed project.

The total population to be served from this Water Supply Project for the coming 15 years design period has been forecasted by using the geometric increase model and the population growth rate of 3 %. The total population of the 'Kebele' to be served from this project within the anticipated design period is estimated to be 9,869 people.

The total Water demand (domestic & public water demands) projection has also been made and the per capita water demand of 25 L/C/day within a distance of 0.5 km from the water delivery point for rural piped water supply system is adopted, in accordance with GTP-II minimum service level. The mode and level of services considered for community water supplies are public fountains and for institutions are stand water points. The proposed Water Supply system units are three spring water sources, spring water collecting chambers, 50m³ capacity standard concrete wet-well, a 100m³ capacity standard concrete reservoir, valve chambers, manholes, distribution pipe lines, public fountains and anchor blocks. The total estimated cost of the project

is 12,065,568.03ETB (USD 416,054.07, with current exchanging rate of 29 ETB/USD) including 15% VAT. The estimated period for the competition of this project is 180(one hundred eighty) calendar days.

Environmental and Social Impact Assessment (ESIA) was carried out, and the resultant outcome of the assessment has classified the project under environmental and social category C. Further to add the project is related to rural water supply and sanitation, it was found that the displacement of population and their property damage is insignificant. The project will have positive environmental and social impact, which would benefit all member of the community (men, women, boys and girls), improve the health status, reduce women and children work load and provide time to engage in productive activities, provide better quality and sustainable water supply to the area, and create job opportunities. To operate the system efficiently and sustainably, the project will give due consideration for both hard ware and soft ware aspects of the project.

ABBREVIATIONS

ADD	Average daily demand
AJDD	Adjusted Domestic Demand
CSA	Central Statistic Agency
ESIA	Environmental and Social Impact Assessment
ETB	Ethiopian Birr
FDRE	Federal Democratic Republic of Ethiopia
GTP	Growth and Transformation Plan
ISO	International Standardization Organization
MDD	Maximum Daily Demand
MoWR	Ministry of Water Resources
OWNP	One WaSH National Program
SDGs	Sustainable Development Goals
SNNPRS	South Nations Nationalities and People Regional State
SZWMED	'Sidama' Zones Water, Mines and Energy Department
USD	United States Dollar
UFW	Unaccounted for water
WaSH	Safe drinking water, sanitation, and hygiene
WHO	World Health Organization
L/C/day	Liters per capita per day

LIST OF TABLES

Table 4.1	Population projection (2019-2035)
-----------	-----------------------------------

- **Table 4.2**The daily domestic demands of different consumptions
- **Table 4.3**Climatic Factor
- **Table 4.4**Socio- Economic factors
- **Table 4.5**The daily demand of institutions
- **Table 4.6**Water demand for Educational Institutions
- **Table 4.7**Water demand for Health institutions
- **Table 4.8** Summary for public & commercial institutional water demand
- **Table 5.1**Location of Water Spring site
- **Table 5.2**Capacity of the springs during the rainy season
- **Table 5.3**Capacity of the springs during the dry season
- **Table 5.4**Water source requirement
- **Table 5.5**Service reservoir capacity calculation
- **Table 5.6**Proportion for school tap water demand
- **Table 5.7**Cost for the supply & installation of GI-pipes
- **Table 5.8**Comparison between GI Vs HDPE Pipes
- **Table 5.9** Standard for HDPE-pipe outer and inner diameters
- **Table 5.10**Normal cover for mains lay in the ground

LIST OF FIGURES

- Figure 1.1 Geographical location & accessibility of 'Awayo Keraro Kebele'
- Figure 5.1Location of Water Springs Site
- Figure 5.2Location of water points

CHAPTER 1 INTRODUCTION

1.1 General

Globally, Safe drinking water, sanitation, and hygiene (WaSH) are fundamental and essential for an improved standard of living of human beings. Access to water supply and sanitation are basic human needs and rights. This right is well recognized in international legal instruments and provides for sufficient, safe, acceptable, physically accessible and affordable water for personal and domestic uses. The benefits of improved water supply and sanitation are numerous, including prevention of disease, improved basic health care, increased quantity of and access to water, reduction in time and effort required for water collection, promotion of economic activity, strengthening of community organization, and ultimately improved quality of life.

Nonetheless, recent data shows that 4 billion people face severe water stress during at least a month in a year, and 1.8 billion at least six months in a year. Competition for water resource will grow due to increasing population, shifting lifestyles as well as climate change. Potable water supply is a central theme, which can be used to achieve sustainable development goals (SDGs).

In recent years, Government of Ethiopia in collaboration with the international donors has made considerable progress in terms of improving low access coverage of safe water supply, sanitation and hygiene (WaSH), which were made the country to achieve some of the Millennium Development Goals (MDGs) by 2015. Despite the significant acceleration in coverage and a relatively favorable policy environment, it needs further effort to achieve the goals of sustainable development plan and One WaSH National Program (OWNP). Under the One WASH National Program, the Government of Ethiopia aims to increase access to safe water supply to 98 percent for rural areas and 100 percent for urban areas and to provide all Ethiopians with access to basic sanitation.

The baseline survey also indicated that, the existing rural water supply sources of the 'Woreda' couldn't satisfy the water demands of rapidly increasing population and also the daily per capita water consumption is below the standard as prescribed in Growth and Transformation Plan (GTP II Phase) that is 25 L/C/day within a distance of 1 km from the

water delivery point. There is high waiting time, the access coverage of water supply among 'Kebeles' is varying significantly, and operation and management of the existing community water supply scheme is limited.

The Government of Czech Republic is one of the donors working closely with the Federal Democratic Republic of Ethiopia (FDRE) which has brought out a significant impact in the 'Development Cooperation Programmers' for the period of 2011-2017. It determines Water Supply and Sanitation as one of the priority sectors of the Czech intervention in Ethiopia. They may offer a proven track record of achievements (e.g. building of water sources, including distribution networks, waste water treatment, etc.). According to the Program, the Czech Republic will focus on establishing sources of safe water in smaller towns as well as in rural areas. Czech Development Agency has extended the program due date and allocated a budget for implementing a program in five Communities of 'Sidama' Zone, in 2019. These communities are 'Dale Woreda' ('Yirgalem-Tula', 'Shoye' & 'Degeya' 'Kebeles'), 'Bensa' 'Woreda' ('Hamesho kebele') and 'Bona-zuria Woreda' ('Boreta-weyo' & 'Awayo-keraro' 'kebeles'). Accordingly, this detail study and design has been carried out in accordance with the scope of assignment agreed up on between the client, Czech Development Agency and the consultant for the program "Improving Quality of Life by Ensuring Availability and Sustainable Management of Water Resources in 'Sidama Zone".

The detail study and design is done based on the preliminary (feasibility) study document conducted by 'Sidama' Zone Water, Mine and Energy Department (SZWMED) in the year 2018. The detail study and design work consists of detail investigation on the existing water supply condition, precise measurement of the pipe line route using 'total station' and selection for the economical pipe material & size, detailed structural & architectural design for the system components, construction materials specification, bill of quantity & cost estimation, standard engineering drawing and environmental and social impact assessment (ESIA) as well as sustainable operation and management of the project.

1.2 Location and Accessibility

'Awayo Keraro Kebele' is located in the Southern Ethiopia, particularly in 'Sidama' Zone, 'Bona Zuria Woreda'. The geographic location of the 'Kebele' is shown in figure 1.1. 'Awayo Keraro Kebele' is found at a distance of 520 kilometers from Addis Ababa. Highway from Addis Ababa to 'Bona' town (the 'Woreda' capital) is an asphalt concrete road, with a total length of 370 kilometers. The remaining 60 kilometers from 'Bona' town to 'Awayo Keraro Kebele' is a gravel road. For the supply of construction materials to the site mainly

Client: Czech Development Agency..... those which are transported from Addis Ababa, this path is suitable in all weather conditions.

Location Map

0.15 0.3

Figure 1.1 Geographical location & accessibility of 'Awayo Keraro'

1.3 Topography, Hydrology and Hydro Geology

The topography of 'Awayo Keraro Kebele' is wide flat. The altitude ranges from 1730 meters to 2270 meters above the mean sea level. The 'Sidama' zone, in general, has three agroclimatic zones, namely cold, semi-arid and arid. 'Awayo Keraro Kebele' in particular is grouped in a climatic condition of semi- arid. There are two main seasons in the 'Kebele', the dry season ("Bega") from March to mid-May and the rainy season ("Keremete") occurring during mid-June to end of the October.

The general geology of 'Sidama' zone is dominantly made up of two types of rocks i.e. Igneous and Metamorphic. Different types of igneous rock comprise more than seventy percent of litho logical unit of the Zone.

1.4 Socio Economic Condition

According to the information from base line survey, the prominent economic activity of the community is agriculture. The major agricultural activities are crop, fruits and vegetable production in the backyard homestead and allied agricultural activity included animal husbandry. About 75% of economic activities undertaken by the community are cultivation of Cash crops, mainly coffee & "Chat". Service rendering institutions such as coffee and local beverage shops constitutes about 25% of the economy.

1.4.1 Education Service

As of now, there are two primary schools, Grade (1-8) and Grade (1-6) & 1 secondary school Grade (9-10) in 'Awayo Keraro Kebele', currently. According to the baseline survey data, there are 1,500 students and 20 working staff in the 'Godo' primary school (Grade 1-8). There are 700 students and 15 working staffs for 'Dassa Dashole' primary school from Grade 1-6. In 'Awayo Keraro' Secondary school there are 950 students and 30 working staffs.

1.4.2 Health Condition

One of the assessments conducted during the study period was the health service of the 'Kebele'. Based on the baseline survey data there is a health post with a capacity of giving service for 50 patients per day.

1.4.3 Business Enterprises

Private business and commercial activities in the 'Kebele' is largely dominated by small trading activities; such as coffee shops, local alcohol beverage shops and restaurants. The major economic activity which is found lucrative and support the Kebele's residents are "coffee" & "Chat" trading, petty trading and employed work and daily labor in their order of importance.

1.5 Project target area and Beneficiaries

1.5.1 Project Area

The prime beneficiaries of the proposed water supply project are the population of 'Awayo Keraro Kebele'. The secondary beneficiaries are the neighbor community of Awayo Keraro Kebele'. The proposed project will increase the performance of water supply scheme of the Kebele and indirectly the surrounding 'Kebeles'. The project will provide improved water supply services and it also will solve the current potable water scarcity in the community.

1.5.2 Project Beneficiaries

The residents of 'Awayo Keraro Kebele', as baseline survey, have expressed their willingness to get improved water supply through active participation in the initiatives of the project. In general, the project will benefit residents to have better access to potable water supply. The existing water supply problem critically affects women and children who are typically responsible at the household level for collecting water. In order to alleviate the problem, creating accessibility to improved water supply and sanitation facilities is expected to contribute to poverty reduction and gender equality among the beneficiary populations in general and by reducing in house work burden from women through reducing time and energy spent in collecting water in particular. This will furthermore creates an opportunity for women and the household in general in benefiting personal health and engage in productive works.

1.6 Existing water supply condition

The results of field survey indicate that there are three unprotected springs in the 'Kebele'. According to the information from the local community the existing water supply condition of the Kebele is only beneficiary for the communities live around the springs. The springs are located more than 5 kms from the 'Awayo Keraro' village. Therefore the community is forced to use surface water such as, ponds and runoff which are exposed to hygienic diseases. This situation led the community vulnerable to water born diseases. It was also observed that the community uses the pond and runoff water mainly for cattle and washing purposes during rainy season which is far from the place of domicile of the community. Thus, the existing water source in the 'Kebele' is not attractive to serve the purpose of the community uniformly. Hence, construction of a new water supply scheme from the spring sources is necessary to solve the existing water supply related problems of the community of 'Awayo Keraro Kebele'.

CHAPTER 2

OBJECTIVES OF THE PROJECT

2.1 The main objective of the project

The main objective of this project is to offer a sustainable potable water supply for the community of 'Awayo Keraro Kebele ' with a positive impact on community health.

2.2 Specific objectives of the project

The specific objectives of the project are;

- 1) To design an effective and efficient water supply system from potential water source with permanent structures.
- 2) To establish a sustainable and environmental friendly water supply scheme.
- 3) To supply potable water for institutions those are in need of potable water supply such as schools, health centers, etc.
- 4) To reduce the work burden on women and children by providing water points at a nearby distance.
- 5) To improve the community health by preventing water borne diseases.

CHAPTER 3

MATERIALS, METHODOLOGY AND CRITERIA OF DESIGN

3.1 Materials and Software

The materials and engineering tools which were used to study and surveying work are total station; Handle GPS, Topographic Map of Ethiopia; Geological and hydro geological Maps. Engineering software was used for survey data analysis and interpretations are - Auto CAD 2018; Water CAD; Arch GIS and Google Earth.

3.2 Methodology of Study

To carry out the detail design of water supply project of 'Awayo Keraro Kebele', the following general approaches and specific methodologies were applied.

- ✓ Meetings were conducted among the community members to discussing the issues pertaining to existing water supply, sanitation and hygiene frequently. Further, discussions were held among the stakeholders at Zonal and 'Woreda' level.
- ✓ Reconnaissance field visit of the water resource, water supply and demand of the community has been made.
- ✓ Detail engineering survey work conducted for economic route for collecting water from the springs and distribution network pipelines.
- ✓ Assessment on the current local market price for construction materials conducted in order to estimate the project cost.

3.3 Study Approaches

I. Desk Work

Review of all earlier studies:

- ✓ Useful geological, hydro geological, geotechnical, social-economic and water quality study report relating to study area.
- \checkmark Data collection and analysis from secondary data sources
- \checkmark Identify data gaps, which need to be investigated during the field study.

Planning of traverse routes for geological fieldwork and identify any potential problems that may need to be dealt with not to impede the project activities.

II. Fieldwork / Discussions with key stakeholders.

The following stakeholders were identified and discussions were held among them:

- ✓ The 'kebele' administration chairman,
- ✓ Officials from the 'Sidama' Zone water, mines and energy department,
- ✓ Health center officer,
- ✓ School director.

3.4 Units and Standards

The metric system of units is used throughout the detail design report, except where imperial units are acceptable and in common usage (e.g. for galvanized iron pipes and fittings diameters). As far as this design and construction, the relevant Ethiopian National Standard has been used or referred to. If no National Standard exists, then the relevant 'ISO' Standard has been used.

3.5 Design parameters & Criteria

Design criteria issued by the Ministry of Water Resources in 2006, has been used as guidelines in the design of this water supply project and adjustments has been made by the Consultant as appropriate. As per the design criteria, the design period is 15 years and the water supply scheme will be implemented for demands up to 2035.

3.5.1 Design Criteria

The Ethiopian Federal Democratic Republic Government, Ministry of Water, Irrigation and Electricity published the second Edition of the Water Supply Design Manual in the year 2006. This Manual has been extremely useful in meeting the needs of those engaged in the planning and design of water supply systems. Therefore, the detail design for 'Awayo Keraro Kebele' water supply project integrated with this manual.

According to the manual a water supply project should be designed on the basis of the following principles:

- ✓ Capacity to satisfy demand at the projected service levels over the design horizon;
- ✓ Provision of adequate safe and sanitary (potable) water;
- ✓ Wise, effective, efficient and environmental friendly use of the water resource;
- \checkmark Safe and sound operation and maintenance of the water facilities;
- \checkmark The system and its operations confirm to the Water Act and any regulations &

guidelines related it; Enhancement of the quality of living standards of the consumers and

✓ Appropriate and cost effective technology relevant to the beneficiaries of the system The Water Supply Design Manual presents the planning and design criteria for the proposed Water Supply projects Feasibility and Detail Design. These criteria are developed for water supply feasibility studies, designs relevant to the National level. The manual states that the user shall modify the parameters taking in to account the particular nature of the area on which the project is to be implemented.

This project is undertaken based on the criteria presented on this design manual as guidelines. The guideline criteria have been reviewed after analysis in the field of socio-economic conditions, water resource situations, operation and maintenance needs and environmental conditions.

3.5.2 Principal Design Criteria

The main criteria adopted for the design of the water supply system are:

- ✓ Design period is 15 years from 2020 to 2035 respectively.
- \checkmark Maximum static water pressure in the distribution system is 80 m.
- ✓ Minimum water pressure in the distribution system is 15 m, with some exceptional conditions.
- \checkmark Minimum velocity is 0.6 m/sec during peak flow.
- ✓ Maximum velocity is 2 m/sec.
- ✓ The adopted technology is cost effective and appropriate taking into account the maximum use of locally available materials, labor force and skills.
- ✓ Scheme components such as reservoirs and conveyance units are designed as per accepted standards.

CHAPTER 4

WATER DEMAND ASSESSMENT

4.1 General

In the design of any water supply project, it is necessary to estimate the amount of water required to be supplied throughout the design period. This involves determining the number of people to be served and their per-capita water consumption along with analysis of the factors that may affect the consumption. The total water demand will be calculated by considering the water requirement for public and domestic usage as expected in the community.

4.2 Population Forecasting

4.2.1 Present population

The use of reliable base population figure is very important for optimizing the project cost and sustaining the project service years. Over or under estimation of the population result in a higher investment cost and a lower service run period respectively. Hence, it is very important to initially get realistic base population figures not to come with the above mentioned problems. There are two alternative methods used to determine the current population. One is by projecting the data from the Ethiopian Statistics Agency census report in 2007, and the other is baseline survey from the 'Kebele' administration office. Since the census data is 12 years old, it is not realistic to use the projected figure for the design purpose. Therefore, it is recommended to adopt the population figure from the base line survey. The demographic data from the base line survey is used for government finance allocation, agricultural and health sectors, currently. Hence the population of 'Awayo Keraro Kebele' is 6,150 in 2019.

4.2.2 Population Projection

The water supply system has to be designed not only for the current residential but for the future population growth into consideration. It will inevitably serve during the design period. The rates for domestic water demand calculation will be those available or implied from the above-mentioned CSA publications for the corresponding population.

According to CSA, the rural population has an average of 3% growth rate of population increment. For rural 'Kebele', like 'Awayo Keraro', geometric progression with CSA growth

<u>Client: Czech Development Agency</u>. rate, i.e. 3%, population forecasting method is selected. The forecasted population of the 'Kebele' for the design period, in the interval of 5 years is listed in table 4.1.

Population forecasting formula for the design period;

P1=Po $(1+K)^{n}$

Where:

P1- population at the current period

Po- Population at the previous period

K- Growth rate = 3%

n- Period (years) = 5 Years

Table 4.1 Population projection (2019-2035)

	Growth rate	Year (Projection period)					
Description	per year (%)	2019 (Base)	2020	2025	2030	2035	
Population projection	3	6,150	6,335	7,343	8,513	9,869	

4.2.3 Population characteristics

The majority of population belongs to 'Sidama' ethnicity and speaks 'Sidamu Afoo' which is Cushitic language family.

4.2.4 Household Characteristics

As per CSA, the average number of members in a household in rural areas is estimated to be 5.38.

4.3 Water Demand Analysis

4.3.1 Domestic Water Demand

The demand for water is to serve for different purposes by a household which includes drinking, cooking, washing, cleaning and other related homestead affairs. Nonetheless, the consumption of water varies according to the mode of service delivery, climatic conditions, and socio-economic conditions and so on.

I. Types of Modes of Services

The most common mode of services being prevalent in Ethiopia could be classified into five

Client: Czech Development Agency.....

categories as given below.

- ✓ Traditional Source users (TSU)
- ✓ Public Tap users (PTU)
- ✓ Neighborhood Tap users (NTU)
- Yard Tap users (YTU)
- ✓ House Tap users (HTU)

Table 4.2 The daily domestic demands of different consumptions

Mode of service	Stage 1	Stage 2
House connection (HC)	50 lit/c/day	70 lit/c/day
Yard connection, own (YCO)	25 lit/c/day	30 lit/c/day
Yard connection, shared (YCS)	30 lit/c/day	40 lit/c/day
Public Tap supplies (PT)	20 lit/c/day	25 lit/c/day

Source: (*MoWR*, 2006)

According to the above table water demand in the Public Tap supplies (PT) is 25 Lit/c/day in stage 2. As far as the proposed design is concerned, the appropriate capacity of water supply through Public Tap is 25Lit/c/day in 'Awayo Keraro Kebele' which is also mentioned in GTP-II minimum service level. Therefore, the water demand analysis has been done on the basis of 25 Liter per capita water demand.

II. **Projection of service level**

There are two different figures regarding the present population of 'Awayo Keraro Kebele'. The baseline survey and the other is population projection based on Central Statistical Agency (CSA) in the 2007. However, after considering two different population figures, the study has adopted population projection from the base line survey data collected from 'Kebele' administration office as a base year population for the study.

The service year for a rural community water supply project is considered 10, 15 or 20 years service year depending of factors such as scope of the project, availability on fund and socioeconomical plan. Hence, the design period for 'Awayo Keraro Kebele' water supply project, is 15 years, due to the limited water source. (Source 'SNNPR water resource office design guideline')

III. Per Capita Demand and Projection

The percentage of population to be served by each mode of service will vary with time. Therefore, the present and projected percentage of population served by different demand category is estimated by taking the above stated conditions. This projection visualized provision of the traditional source users with public taps.

IV. Adjusted Domestic Water Demand

The above average domestic demand should further re-fixed by adjustment factors such as climatic and socio- economic conditions.

The water consumption is less in the area where the average temperature is low and high where temperature is very high, in general. 'Awayo Keraro' has an altitude range of from 1700 to 2100 meters above the mean sea level. Accordingly; 'Awayo Keraro Kebele' falls under temperate climatic zone, where the annual temperature is between 15-20 °C. Hence the climatic factor of 1.0 is considered for water demand adjustment.

Table 4.3	Climatic	Factor
-----------	----------	--------

Mean annual Temp.	Description	Altitude	Factor
(°C)			
<10	Cool	> 3300	0.8
10 – 15	Cool Temperate	2300 - 3300	0.9
15 – 20	Temperate	1500 - 2300	1
20 - 25	Warm Temperate	500 - 1500	1.3
25 and above	Hot	<500	1.5

Source: (MoWR, 2006)

The results of the socio economic survey shows that the sources of livelihood of the community are cultivation of Cash crops mainly coffee & "Chat", service rendering institutions such as coffee and local beverage shops and etc. In view of the above facts, the town is categorized as Group D (Advanced Rural Towns). Therefore, a socio-economic adjustment factor of 0.9 has been adopted, from table 4.4, as a water demand adjustment factor. After considering changes in population and the mode of service, per-capita- demand and applying the adjustment factors, the domestic demands were calculated and presented in Annexure V.

 Table 4.4 Socio- Economic factors

Group	Description	Factor
	Towns Enjoying high living standards and with very high potential for	
А	development	1.1
	Towns having a very high potential for development but lower living	
В	standards at present	1.05

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report		MENT OF CONSULTANCY ON WATER
Client: Czech Development Agency		 Colorest Co.
C	Towns under normal Ethiopian conditions	1
D	Advanced Rural Towns	0.9

Source: (MoWR, 2006)

4.3.2 Non-Domestic Water Demand

Non-domestic water demand can be broadly classified into the following major categories:

I. Institutional Demand

Institutional water demand includes the quantity of water required to be supplied to offices, hospitals, Schools, Universities, etc. This quantity will vary considerably with the nature of the town and the number and type of institutions existing at present. Commercial water demand includes water required for hotels, restaurants, bars, fuel stations, and local drink houses.

Table 4.5 The daily demand of institutions

Item	Consumer Category	Daily demand
1	Day school	5 l/pupil
2	Hospitals & health centers	50 - 75 l/bed

Source: (MoWR, 2006)

II. Livestock Water Demand

The demand for livestock watering from the public water supply system shall be assessed in the 'Awayo Keraro kebele' during the baseline survey. Whereas it is not feasible to include livestock demand in the community water supply system for 'Awayo Keraro kebele', Due to the following reasons:

- ✓ Insufficient water source from the springs
- ✓ The availability of surface water sources in the 'Kebele' from which the livestock can consume.

III. Educational Institutions

The number of students attending to schools is normally expected to grow parallel to the total population growth. The number of students in 'Awayo keraro Kebele' primary school is around 1,935 in Primary school and 980 in secondary school. This figure includes the staffs working in the schools. According to the demand analysis result the educational institutions require 11.62% of the total adjusted domestic water supplied to the community. From the total water to educational institutions, 'Godo' Primary school demand 50%, the remaining

н.

50% will be supplied to 'Dassa Dashole' Primary school and 'Awayo Keraro' secondary school equally.

	Daily	Number of students	Demand
Consumer category	Demand	& working staff	(l/day)
'Dassa Dashole' Primary school (1-6)	5	715	3,575
'Godo' Primary school (1-8)	5	1,520	7,600
'Awayo Keraro' secondary school (9-10)	5	980	4,900
	Ave	erage day demand (l/d)	16,075
Average day demand (m ³ /day)		16.075	
Average day demand (l/s)		0.19	
Adjusted Domestic Wate	r Demand (A.	JDD) in 2019 (m ³ /day)	138.38
	% of AJDD	[(16.075/138.38)*100]	11.62

Table 4.6 Water demand for Educational Institutions

Source: Baseline survey, 2019

IV. Health Institutions

Based on baseline survey, there is only one health center in the 'Kebele' with a capacity of giving service for 50 patients per day.

 Table 4.7 Water demand for Health institutions

Consumer category	Quantity	Daily Demand	No of Beds /visitors	Demand
Health center	1	60	50	3,000
Average demand (l/d)	3,000			
Average demand (m ³ /day)				3.00
Average demand (l/s)	0.035			
Adjusted Domestic Water D	138.38			
% of AJDD [(3.00/138.38)*	2.17			

Source: Baseline survey, 2019

Table 4.8 Summary for public & commercial institutional water demand

No.	Institutions & Commercials	Water Demand (% of AJDD)
1	Schools	11.62

Client:	Czech Development Agency		•	1.4
2	Health center	2.17		
	Total	13.79		

4.3.3 Unaccounted-for (or non-revenue) Water

Unaccounted-for water (UFW) is expressed as a percentage of the total water produced for the system. UFW arises from system leakage, water taken by illegal connections, inaccuracies in metering, overflowing of reservoirs, etc. UFW cannot be assessed easily without adequate and reliable metering. However, 15% to 30% of the water produced might be unaccounted for towns. For rural town like 'Awayo Keraro Kebele', a figure of 15% is generally regarded as good and it is uneconomical to try and reduce below this value. Therefore, 15% Total Adjusted Domestic Water Demand (TAD) is adopted for Unaccountedfor (or non-revenue) Water for this project.

4.3.3 Demand Variations

I. Seasonal Peak

The rural communities in Ethiopia are characterized by widely varying climatic conditions and hence the variations in consumption during the year, reflected by a peak seasonal factor, will similarly vary. It is expected that seasonal peak factors will vary between 1.0 and 1.2, representing the relative increase in the average daily demand during the dry and/or hot season months compared with the average annual demand. For convenience, we adopted 1.0 as seasonal peak factors in the analysis of this project.

II. Peak Day Factor

Many communities exhibit a demand cycle that is higher in one day of the week than in others. This situation shall be taken into account by the use of a peak day factor. The proposed maximum day factor usually varies between 1.0 & 1.3 as per the design Criteria (MoWR,2006). According to judicious observance of the habits of consumers and the knowledge of the community and system operators, we adapted the average i.e. 1.15 as a peak day demand factor for 'Awayo Keraro Kebele'.

III. Peak Hour Factor

Water demand varies greatly during the day. The distribution system must be designed to cope with the peak demand, which is taken into account by the use of a peak hour factor. This peak hour factor is expressed as a multiple of the annual average daily demand and applied additionally to the seasonal and peak day factors. The peak hour factor varies inversely with the size of the consumer base. Based on the Ministry of water and energy design criteria

Population Range	Peak hour factor
< 20,000	2
20,001 to 50,000	1.9
50,001 to 100,000	1.8
> 100,000	1.6

 Table 4.13 Recommended Peak Hour Factors

Source: (MoWR, 2006)

4.3.4 Summary of Water Demand

The total water demand used for designing the water supply system components is summarized as in Annexure V.

CHAPTER 5

DESIGN OF WATER SUPPLY SYSTEM

5.1 Introduction

Basically, water supply sources development for particular area start with identifying the problems of the present water supply system of the project area, conduct geological and hydro geological investigations and identification of potential water sources for future use based on the findings of socio-economy and the results of total water demand analysis. The selection of water source for the supply of the area is based on reliable sustainability, quality and feasibility of water source. This design report thus comes out with the best possible water supply system for the 'Awayo Keraro Kebele' community water supply system.

A design period for the proposed scheme is 15 years. The proposed water supply system to be designed for the design period of the project consists of the following scheme components: Spring capping, wet well, transmission system and pipe sizing, reservoir and distribution system, public fountain and etc.

5.2 Water source

5.2.1 Water source location

The water source for 'Awayo Keraro Kebele' water supply scheme is from three water springs. Two springs are located in 'Godo' village and the remaining spring is found in 'Desse Dashole' village. The specific location of the water sources is tabulated in table 5.1.

Item No.	Site	GPS Location		
		Easting UTM	Northing UTM 37N	Elevation
		5711	5711	
1	Godo- 1	465135.7	709935.2	2241
2	Godo -2	465101.7	709917.4	2244
3	Desa Dashole	466434.8	709339.9	2269

Table 5.1: Location of Water Spring site

Figure 5.1 Location of the springs' sites

5.2.2 Water source capacity

A water source capacity needs to be sized for the total water demand including unaccounted for water (ADD). The water supply source is a spring which is intended to satisfy the maximum daily water demand of the population.

A field measurement on the discharge of the spring is undertaken on 21, June 2019 (the rainy season of the year). A 20 liter plastic can and a stop watch is used as a measuring instruments. The time taken to fill the can is recorded. This process is repeated five times. The average time is used to calculate the discharge of each spring. The discharge can be

calculated by dividing the volume of the plastic can (20 lit) by the average time. The discharge for each spring is tabulated in table 5.2. According to the Preliminary design made by SZWMED in May 2018 (the dry season of the year) the discharge of the springs is listed in table 5.3.

The seasonal variation on the discharge of the spring can be compute by comparing table 5.2 and table 5.3. The 'Godo' springs doesn't show a significant variation on the discharge by various season of the year, whereas the 'Dase Dashole' spring has a significant change on the discharge during the different season. Therefore, for the design purpose the smaller discharge will be considered. It is not economical to design the diameter of the pipe for the higher discharge of the spring.

The discharge for the springs during the dry season of the year is considered for the design purpose will be:

- ➢ Godo-1 will be 0.65 Lit/sec
- ➢ Godo-2 will be 0.63 Lit/sec
- Dassa Dashole will be 2.45 Lit/sec

The cumulative discharge of the three springs, i.e. 3.75 lit/sec, is taken as the water source for the community water supply scheme.

Table 5.2: Capacity of the springs during the rainy season of the year

Spring Name	Time (Sec.)						Volume	Discharge
	T ₁	T ₂	T ₃	T ₄	T ₅	T Average	(Lit)	(Lit/Sec)
Godo 1	29.8	30.2	28.6	29.4	29.1	29.42	20	0.67981
Godo 2	32.8	30.2	32	31.4	32.1	31.7	20	0.630915
Dassa Dashole	5.6	6.4	6.8	7	6.1	6.38	20	3.134796

Source: Baseline survey

Table 5.3: Capacity of the springs during the dry season of the year

Spring Name	Discharge (Lit/Sec)
Godo 1	0.65

Chefter Czeen Development Agene y	
Godo 2	0.65
Dassa Dashole	2.45

Source: Preliminary design, SZWME, May 2018

According to the demand analysis as shown in table 5.4, the total amount of source required to satisfying the demand of 'Awayo Keraro Kebele' community throughout the design period (for the coming 15 years) will be 3.87 lit/sec. Therefore, the available source, which is 3.75 lit/sec, from the three springs, will satisfy the water demand for the design period. An additional water source, with a capacity of 0.12 Liter per second, is required after 10 years from 2020.

Design stage		Design Period				
Year	2019	2020	2025	2030	2035	
Maximum daily demand MDD(lit/sec)	2.41	2.48	2.88	3.34	3.87	
Water production from the BH source (lit/sec)	3.75	3.75	3.75	3.75	3.75	
Required water source (lit/sec) (BH source – MDD)	-	-	-	-	0.12	

5.2.3 Water Quality

The baseline survey regarding the quality of the spring show the spring has been using for drinking for the long time in the village,. high fluoride contain and high total suspended solids are the major problem regarding the quality of water in SNNPR. The geology and the hydrology of 'Awayo Keraro Kebele' doesn't indicate the continent high fluoride content mineral in the ground water and according to the "Kebele's" health office, there is no any record symptom on the community related with high fluoride containing water. The water the spring capping structure will be constructed in a way to increase the quality of water by reducing the total suspended solids. As shown in drawing number HY-DWG-006, there is graded river gravel filter inside the spring capping structure. The gravel filter is used as a mechanism to reduce the suspended solids in the spring. Moreover, a water quality test will be undertaken during the construction stage and an appropriate measure will be taken to increase the quality of the water as per WHO standard.

5.3 Reservoir/ Wet Well

Service reservoirs are used to store the treated water with in or near to the demand of distribution areas. As outlined in the Design Criteria, the volume of the reservoirs is sized by comparing the recommended designing methods such as:

(a) Mass curve based on the peak hour demand variations used in the network analysis for each pressure zones plus some allowances (upto10%) for firefighting and emergency volume in case of power break down, repairs or other Operation and management (O&M) activities. This method is mostly used for urban water supply system, where the peak hour demand varies significantly. The house hold connections produce the significant peak hour variation.

(b) The simple-thumb- rules mentioned in the Design Criteria saying 2 to 4hrs storage of the daily average flow or certain percentage of the average daily flow. Finally in each case engineering judgment is used to set the final sizes. This method is preferable for the rural community water supply, where the peak hour demand variation is not significant. This is due to the water pipe network is public tap connection.

Hence, the second option is considered for the design of the reservoir capacity for 'Awayo Keraro Kebele' rural community water supply project. The volume of the service reservoir will be designed using the simple-thumb- rules mentioned in the Design Criteria with the capacity equal with 1/3 of the average daily demand. According to table 5.5, the calculation made for the water demand for the design period, i.e. 15years, 100m³ capacity circular reinforced concrete service reservoir will be proposed for this project. Refer drawing HY-DWG-009 & HY-DWG-011 for the detail structural and pipe connections. The station/site plan for the reservoir is shown in drawing number HY-DWG-002. The geographic location of the reservoir is UTM 37N 469969.9 North, 709856.7 East & 2025m Elevation above the mean sea level.

Description	Unit	Year				
		2019	2020	2025	2030	2035
Average Day Water Demand(ADD)	m ³ /day	181.01	186.44	216.14	250.56	290.47
Reservoir capacity (1/3 of ADD)	m ³	60.34	62.15	72.05	83.52	96.82
Adopted reservoir capacity	m ³	50	50	100	100	100

 Table 5.5:
 Service reservoir capacity calculation

The volume of the Wet-well is design by taking 3 hours storage from the daily average water

inflow. The daily average inflow to the wet well from the three springs is 3.75 lit/sec. Therefore, the required volume of wet well can be calculated as follows;

Volume of wet well = $3.75 \text{ Lit/sec x 3hrs x 3600 sec/hr} / 1,000 \text{ Lit/m}^3$ = 40.5 m^3 Adapted volume of wet well = 50 m^3

The 50m³ circular reinforced concrete structure wet well is designed to provide sufficient sump to supply of water in a continuous basis volume to the water points at 'Godo' village and to the 100m³ reservoir located in 'Awayo Keraro' village. Refer drawing HY-DWG-008 & HY-DWG-010 for the detail structural and pipe connections. The station/site plan for the reservoir is shown in drawing number HY-DWG-002. The wet well have a geographical location of 465142.6 North, 709994.6 East & 2236 Elevation above mean sea level. Both structures (50m³ & 100m³ water tanks) have inlet/outlet pipe, drainage pipe, overflow

pipes, manhole, ladder & ventilation.

5.4 Water Transmission & distribution Pipe System Design

The purpose of a transmission and distribution pipe system of a water supply scheme is to deliver the right quantity and quality of water conveniently to the demand areas. The delivery system is classified into two: the transmission main and the distribution. Transmission mains convey water from the source, treatment, or storage facilities to the distribution system normally via a storage reservoir. The purpose of this larger diameter pipe is to deliver water to the distribution mains where most of the service connections are. Distribution mains deliver water to individual customer service lines and provide water for fire protection through fire hydrants, if applicable. The distribution mains normally deliver water from a storage reservoir to the consumers.

Among the four basic arrangements of water supply systems, listed in the design manual (MoWR, 2006), to deliver water from the source to the consumer, Type-1 system (Gravity System) is adopted for 'Awayo Keraro Kebele' water supply project. In this type of pipe system, water from the storage to the service reservoir will be delivery by gravitational force. The water will also be distributed from the reservoir to the consumer through gravity. The advantage of Type-1 system, it doesn't required operation cost, where there is no pumping is required in this type of system.

5.4.1 Design of Gravity distribution Pipe Network

Gravity distribution pipe network in 'Awayo Keraro Kebele' is a distribution system starting from the collection chamber at 'Godo' spring 1 & 2 and 'Dashe Dashole' spring. The water collected from the two springs at 'Godo' will be supplied to the 50m3 wet-well located at 'Godo' village. The spring water collected from 'Dashe Dashole' spring will be supply to the 50m3 wet well at 'Godo' and two public water points in 'Dasa Dashole' village and one school tap in 'Dase Dashole' primary school. The proposed 50m³ wet well will distribute water to one public water point in 'Godo' village, one water tap at 'Godo' primary school and to the proposed 100m³ reservoir at 'Awayo Keraro' Village. The proposed 100m³ reservoir at 'Awayo Keraro' Village. The proposed 100m³ primary school tap. The whole pipe network is a gravity system. (Refer drawing number HY-DWG-001 & Water CAD pipe preview in annexure III /HY-WCAD-001-A/)

The distribution network is designed based on the following constraints;

- I. Current demand and Future expansion at the node,
- II. Economic size of the pipe
- I. Current demand and Future expansion at the node

The distribution network is designed based on the peak hour demand for the design period. According to the water demand analysis in chapter 4, the peak hour demand of the community after 15 years will be 7.73 Lit/sec. As a result, the distribution system will be design for 7.73 Lit/sec water demands. The following consideration is taken for the demand of water in the system. Refer Annexure-III, HY-WCAD-001-C, for the demand on each node.

- ✓ Each public water points demands, 0.82 Lit/sec (6.56 lit/sec for 8 water points),
- ✓ The school taps demand 1 Lit/sec,(11.62% of 7.73 Lit/sec), refer table 5.6 for the proportion for the three school water taps.
- \checkmark The remaining 0.17 lit/sec will be kept in the system for future expansion.

Name of the school	Proportion from the total	Demand	
	demand(1 lit/sec) based on		
	the number of students	(Lit/sec)	
'Dassa Dashole' Primary	1/4	0.25	
school (1-6)			
'Godo' Primary school (1-8)	2/4	0.5	

 Table 5.6: Proportion for school tap water demand

'Awayo Keraro' secondary	1/4	0.25
school (9-10)		

II. Economic size of the pipe

Distribution systems should be planned with either one large diameter pipe suitable for the final planning horizon or multiple smaller diameter pipes installed at various intermediateplanning horizons. An economic analysis should be carried out to determine the cheapest solution.

The operating pressures in the distribution pipe network for this project ranges from 2.85m to 165.47m, (refer Annexure-III, HY-WCAD-001-C). The pressure above and below the allowable limit is developing at the following nodes, the reason for accepting these points are described below:

- Manhole 1 & Manhole-2 have a pressure of 2.85m and 8.96 m respectively, these nodes are located near the water source. Therefore low pressure near the reservoir is one of the exceptional conditions in the design manual for MoWR, therefore low pressure in these nodes is acceptable.
- The node at WP-1 in 'Godo' village develops a pressure of 5.17meter above the ground, whereas, the height of the water point is below 2meters. Therefore the pressure is acceptable only to deliver water at this point.
- The pressure at the 100m³ reservoir is 165.47m, i.e. above the design limit. Whereas, at this node there will be a water free fall at the reservoir. Therefore a reservoir will be used as a pressure break tank. Therefore no need for installing a pressures break tank near the reservoir. Note that, the scheme consists of 10m³ pressure break tank near Manhole-4 and a pressure release valve at Manhole-7 & Manhole-8 to reduce the pressure at the nodes and to result the pressure in the acceptable limit.

Velocity and head loss

Experience shows that a pipe designed to flow at a velocity between 0.6 and 1.5 m/sec, depending on diameter, is usually at optimum condition (head loss versus cost). The water velocities in the distribution pipe system ranges from 0.38 m/s - 1.42 m/s (refer Annexure-III, HY-WCAD-001-D). All pipes develop a velocity in the recommended, range hence ok!, except pipe line label as P-6 (MH1-ABST). The reason for accepting this pipe is described below:

The method used to increase the velocity of the water in the pipe is by reducing the diameter of the pipe. Therefore for P-6 when the internal diameter is reduced to

20mm, the Water CAD result shows the velocity in the pipe is 0.98m/s whereas a negative pressure develop at node ABST (-6.05m). It is mandatory to select a pipe with an internal diameter of 26mm, even though the velocity is below the. This will increase the cost of the pipe but there is no other option to optimize the performance of the pipe.

Hydraulic computation

The water CAD software, recognized formula uses in the hydraulic computations, with Hazen-William coefficients, 150 for HDPE pipes.

The physical characteristics (crushing strength, resistance to corrosion, etc) of the pipes should suit the actual service conditions arising in the system with respect to internal and external loads and soil conditions.

The static state pressures in pipelines must be less than the pipe nominal pressure rating. For this, particular project HDPE pipe with PN-16 is adopted, hence the water pressure develop in the pipes is less than the pipe nominal pressure rating.

The hydraulic analysis for the gravity pipe network is shown in Annexure III / HY-WCAD-001-A, B, C & D/.The pipe network preview is shown in Annexure III/ HY-WCAD-001 /. The network preview also shows the location of the reservoir, water points, manhole, & school tap.

Selection of pipe material and types

According to the design manual, the following materials will normally be selected, taking into consideration useful lifetime, leakage levels and maintenance requirements.

For distribution systems:

✓ HDPE pipes

The type of pipe material to be selected shall depend on:

- ✓ Characteristics of the soil
- \checkmark Chemical nature of the water
- ✓ Cost of the pipe
- ✓ Types of Crossings/fittings

In the preliminary study report for 'Awayo Keraro' Kebele water supply project done by S/Z/W/M/E, (2018) GI- pipes are proposed for the whole distribution pipe system, whereas we propose HDPE pipe material due to the following reasons.

✓ The total cost for GI pipes for the whole distribution system is 298% greater than the cost for HDPE pipes. This means, there will be additional 8,488,787.62 Ethiopian Birr or 303,170.99 US Dollar in the project cost due for using GI- pipes instead of HDPE pipes. For more detail see table 5.8 in comparison with cost estimation for HDPE pipes in the Bill of quantities for pipes & fittings in chapter eight.

✓ The advantage of HDPE over GI pipe on Chemical reaction resistance, Corrosion resistance, Venerability for damage, Pressure resistance, Workability/flexibility, Types & number of Crossings/fittings and Availability on the market are listed in table 5.9.

Table 5.7 Cost for the supply & installation of GI-pipes

Supply and Install GI- pipe for the gravity distribution pipe network (Class- B), *Note that,* 5% additional length on each pipe item for contingency.

	1		1	1	1	
Item	Description	Unit	QTY	Rate	Amount	
no	Ĩ					
1	Internal Diameter 100 mm	m	364.35	1,543.67	562,436.16	
2	Internal Diameter 75 mm	m	5,158.65	1,223.14	6,309,751.16	
3	Internal Diameter 63 mm	m	2,08.95	1,004.72	209,936.24	
4	Internal Diameter 50 mm	m	2,427.6	784.64	1,904,792.06	
5	Internal Diameter 38 mm	m	5,372.85	684.22	3,676,211.43	
6	Internal Diameter 25 mm	m	154.35	454.89	70,212.27	
7	Internal Diameter 18.5 mm	m	174.3	297.91	51,925.71	
	Total Carried to summaryETB					

Table 5.8 Comparison between GI Vs HDPE Pipes

Item	Criteria	GI- Pipe	HDPE Pipe
no.			
1	Cost of the pipe (ET. Birr)	12,785,265.05	4,296,477.42
2	Chemical reaction resistance	Low	High
3	Corrosion resistance	Medium	High
4	Venerability for damage	Low	High
5	Pressure resistance	High	Medium
6	Workability/flexibility	Low	High
7	Types & number of	Many	Small
	Crossings/fittings		
8	Availability on the market	Less/	High/manufactured
		imported	locally

Therefore, HDPE-(PN16) pipe is proposed as a distribution system for the project. The total length for all types of pipes required for the project is tabulated in pressure pipe inventory; refer Annexure III / HY-WCAD-001-G. Note that an additional 5% on each pipe item is added on the pipe length for contingency purpose. Unlike the GI-pipes, HDPE pipe has a ticker wall. Therefore, for the hydraulic calculation purpose, the inner wall diameter is considered whereas, for specification in the bill of quantity the outer diameter is used. The HDPE pipes are specified by its outer diameter in the local market. Table 5.9 shows the standard HDPE-pipe outer and inner diameters for different pipes.

PE100 PN16 HDPE Pipes							
Inner Diameter(mm)	Wall Thickness(mm)	OD (mm)		Inner Diameter(mm)	Wall Thickness(mm)	OD	
20.4	2.3	25		61.4	6.8	75	
26	3	32		73.6	8.2	90	
32.6	3.7	40		90	10	110	
40.8	4.6	50		102.2	11.4	125	
51.4	5.8	63		114.6	12.7	140	

 Table 5.9 Standard for HDPE-pipe outer and inner diameters

5.3.2 Depth of pipe line in the ground

The criteria governing the depth at which pipes are laid are the protection and safety of the pipeline, easy maintenance and avoidance of excessive earth pressure and live load due to traffic. In these respects, the following criteria should be adopted:

- ✓ The piping shall be laid in an open trench on a 0.8meter thick. Pipes shall be laid either separately or together with another piping.
- ✓ Main pipe laid in rocky conditions may have a minimum cover of 0.6 meter, or could be surface laid if security and anchorage concerns are properly addressed,
- ✓ Where the minimum cover cannot be achieved, a buried pipeline will be encased in an anchor block.

Table 5.10 Normal cover for mains lay in the ground

Item No.	Pipe material	Depth of cover (cm)
1	HDPE	80

5.3.3 Valves

The provision of valves should be based on the following considerations:

- ✓ Spacing: Isolating valves on mains should be installed at intervals as required, their spacing being dictated by factors such as washout requirements, connections to consumers. The valves installed on each manhole is indicated in drawing numberHY-DWG-005, similarly the valve chamber for 100m³ reservoir and 50m³ wet-well is shown in drawing number HY-DWG-0011 & HY-DWG-0010 respectively.
- ✓ Mandatory locations: Isolating valves should be provided at interconnecting pipes, by-pass pipe connections.

5.3.4 Fittings

Pipeline fittings (bends, tees, couplings, flanges, branches, elbows, etc.) should be as follows:

✓ Appropriate for the pipeline configuration; normally they will be of Galvanized iron or of HDPE to match the pipeline material installed, the same diameter and the same or higher pressure class of the pipeline in which they are installed.

5.3.5 Water point/Public taps

In this project, the water points, which are required to be designed and provided for the public and school. The public demand 8 water points WP-1 to WP-8, each water points will have 6 water taps. Similarly schools demand three water points with 8 water taps on each water points as shown in the drawing HY-DWG-007. The water point is designed as a standard of masonry structure of 1.45 m high. The public point shall be laid on a stabilized 5.2 x 4.7 m concrete slab, 0.15 m thick. Also, the school point shall be laid on a stabilized 3.6x3m concrete slab, 0.15 m thick. This slab shall be provided with a peripheral intercepting groove 0.20 m wide and 0.05 m deep.

5.3.6 Anchor blocks

It is a supporting structure of pipe network made of stone masonry shown in the figure HY-DWG-005. This project demand four number of anchor block with varying height as per the requirement. It consists of base slab and vertical wall. The typical dimensions of base slab are 1000x400mm, 250mm thick and the height of the anchor block depends on the alignment of the pipe which depends on the topographic condition. The location of the anchor block will be proposed while the pipe is laid on the ground, in places where it is difficult to bare the pipe under the ground an anchor block will be used to fasten the pipe while it is lay above the ground. As result the number of anchor block might vary.

5.3.7 Manhole

The man hole is made of masonry wall with masonry base slab. There are 8 number of manhole are required for the pipe line network. The structural work of the manhole is same for all the 8 numbers but the water line connection is different which is shown in the drawing HY-DWG-005. The overall typical size of the manhole is 1.2x1.5m. It consists of base slab and vertical walls of thickness 250mm. The base slab is seated with 80mm lean concrete and 150mm well compacted soil.

Figure 5.2 Location of water points

CHAPTER 6

IMPLEMENTATION PLAN/ SCHEDULE/

16.00	15.00	14.00	13.00	12.00	11.00	10.00	006	8.00	7.00	6.00	5.00	4.00	3.00	2.00	1.00		ltem No.
CHEEK THE SYSTEM & COMPSIONING	FENCING FOR SCHOOL WATER POINT/ SPRING CAPPING	FENCING FOR PUBLIC WATER POINT	FENCING FOR STATION-2	FENCING FOR STATION-1	MAN HOLE	ANCHOR BLOCK	SPRING CAPPINC/ COLLECTING CHAMBER	BREAK PRESSURE TANK	SCHOOL WATER POINT	FUBLIC WATER POINT	50M ² WET-WELL/INTAKE WELL	INLET AND OUTLET VALVE CHAMBER	100M ⁴ RESERVOIR	PIPE NETWORK & FITTINCS	MOBILAIZATION OF MAN POWER & EQUIPMENT TO PROJECT SITE		SUSTEM COMPONENTS
																1	
																2	
																8	TIME (A
																7	(HILNOS
																01	
																6	

CHAPTER 7

BILL OF QUANTITIES

- 7.1 COMBINED SUMMARY OF BOQ
- 7.2 PIPE NETWORK & FITTINGS
- 7.3 $100M^3$ RESERVOIR
- 7.4 INLET AND OUTLET VALVE CHAMBER
- 7.5 50M³ CAPACITY RC RESERVIOR / INTAKE WELL
- 7.6 PUBLIC WATER POINT
- 7.7 SCHOOL WATER POINT
- 7.8 BREAK PRESSURE TANK
- 7.9 SPRING CAPPING/ COLLECTING CHAMBER
- 7.10 ANCHOR BLOCK
- 7.11 MANHOLE
- 7.12 FENCING FOR STATION-1
- 7.13 FENCING FOR STATION-2
- 7.14 FENCING FOR PUBLIC WATER POINT
- 7.15 FENCING FOR SCHOOL WATER POINT/SPRING CAPPING

	7.1 COMBINED SUMMARY OF BOQ							
	Station/Component	Sub components	No	Unit Cost (ETB)	Total Cost (ETB)			
1	Pipe Network and fittings (P&F)	-	1	6,146,076.76	6,146,076.76			
	Total cost for P&F		•••••	•••••	6,146,076.76			
2	Station-1	100m ³ Reservoir	1	1,250,487.42	1,250,487.42			
		Inlet-outlet chamber	1	68,120.61	68,120.61			
		Fencing*	1	122,658.14	122,658.14			
	Total cost for Station	n-1	•••••	•••••	1,441,266.17			
	Station-2	Spring capping	3	160,559.65	481,678.94			
		Fencing*	3	43,641.30	130,923.89			
3		50m ³ Wet-well	1	513,366.20	513,366.20			
		Inlet-outlet chamber	1	68,120.61	68,120.61			
		Fencing*	1	81,645.90	81,645.90			
	Total cost for Station	n-2	•••••	•••••	1,275,735.54			
4	Water Point	WP-1toWP-8 (Public)	8	77,332.58	618,660.64			
		Fencing*	8	53,341.41	426,731.28			
		WP (School Tap)	3	52,106.81	156,320.43			
		Fencing*	3	43,641.30	130,923.89			
	Total cost for WP	•••••	•••••		1,332,636.24			
5	Man Hole	MH-1 to MH-6	8	6,906.35	55,250.80			
6	Anchor Block	AB-1 to AB-4	4	1,030.98	4,123.92			
7	Pressure Break tank	PBT-1	1	132,829.66	132,829.66			
	TOTAL COST		• • • • • • • • • • • •	•••••	10,387,919.1			
	MISCELLANEOUS	6 (1%)	••••••	••••••	103,879.19			
	TOTAL COST OF 7	THE PROJECT	•••••	•••••	<u>10,491,798.2</u>			
	VAT (15%)		•••••		<u>1,573,769.74</u>			
	GRAND TOTAL CO	OST OF THE PROJECT			<u>12,065,568.0</u>			

* The considered fencing is permanent and made of RC structure with structural steel gate as shown in the drawing which is costlier. If we use wooden fencing, the cost for fencing is approximately 30% off the permanent.

7.2 \$	7.2 SUPPLY AND INSTALLATION OF PIPE NETWORK AND							
FIT	FITTINGS							
					Amount			
No Description					(ETB)			
	Summary of H	Bill of	Quantity					
GRAVITY DISTRBUTION PIPE SYSTEM								
1	1 Excavation and back fill work 1,790,821.76							
2	Supply & installation of pipes			4,296	,477.42			
3	Supply & installation of fittings	• • • • • • • •	••••••	58,77	7.57			
,	Total carried to combined summary 6,146,076.76							
GR A	AVITY DISTRBUTION PIPE SY	STEN	Λ					
				Rate	Amount			
No	Description	Unit	Qty	(ETB)	(ETB)			
No	Description 1. EXCAVATION & BACK FII	Unit L W	Qty ORK	(ETB)	(ETB)			
No	Description1. EXCAVATION & BACK FIITrench excavation in ordinary	Unit L W m ³	Qty ORK 6,173.30	(ETB) 174.48	(ETB) 1,077,106.1			
No	Description1. EXCAVATION & BACK FIITrench excavation in ordinarysoil to a depth 800mm* 600mm	$\frac{\mathbf{Unit}}{\mathbf{L} \mathbf{W}}$	Qty ORK 6,173.30	(ETB) 174.48	(ETB) 1,077,106.1 6			
No	Description1. EXCAVATION & BACK FIITrench excavation in ordinarysoil to a depth 800mm* 600mmwidth to bared the pipe for	Unit L W m ³	Qty ORK 6,173.30	(ETB) 174.48	(ETB) 1,077,106.1 6			
No	Description1. EXCAVATION & BACK FIITrench excavation in ordinarysoil to a depth 800mm* 600mmwidth to bared the pipe for12,861.05 meters length.	Unit LL WO	Qty ORK 6,173.30	(ETB) 174.48	(ETB) 1,077,106.1 6			
No 1.1 1.2	Description1. EXCAVATION & BACK FIITrench excavation in ordinarysoil to a depth 800mm* 600mmwidth to bared the pipe for12,861.05 meters length.Trench excavation in weathered	Unit L W m ³	Qty ORK 6,173.30 480.00	(ETB) 174.48 249.62	(ETB) 1,077,106.1 6 119,816.24			
No 1.1 1.2	Description1. EXCAVATION & BACK FIITrench excavation in ordinarysoil to a depth 800mm* 600mmwidth to bared the pipe for12,861.05 meters length.Trench excavation in weatheredrock soil formation to a depth	Unit L W m ³	Qty ORK 6,173.30 480.00	(ETB) 174.48 249.62	(ETB) 1,077,106.1 6 119,816.24			
No 1.1 1.2	Description1. EXCAVATION & BACK FIITrench excavation in ordinarysoil to a depth 800mm* 600mmwidth to bared the pipe for12,861.05 meters length.Trench excavation in weatheredrock soil formation to a depth800mm* 60mm width to bared	Unit L W m ³	Qty ORK 6,173.30 480.00	(ETB) 174.48 249.62	(ETB) 1,077,106.1 6 119,816.24			
No 1.1 1.2	Description1. EXCAVATION & BACK FIITrench excavation in ordinarysoil to a depth 800mm* 600mmwidth to bared the pipe for12,861.05 meters length.Trench excavation in weatheredrock soil formation to a depth800mm* 60mm width to baredthe pipe for 1,000 meters length.	Unit L W m ³	Qty ORK 6,173.30 480.00	(ETB) 174.48 249.62	(ETB) 1,077,106.1 6 119,816.24			
No 1.1 1.2 1.3	Description1. EXCAVATION & BACK FIITrench excavation in ordinarysoil to a depth 800mm* 600mmwidth to bared the pipe for12,861.05 meters length.Trench excavation in weatheredrock soil formation to a depth800mm* 60mm width to baredthe pipe for 1,000 meters length.Load & cart away all excavated	Unit L W m ³ m ³	Qty ORK 6,173.30 480.00	(ETB) 174.48 249.62 73.90	(ETB) 1,077,106.1 6 119,816.24 35,474.18			
No 1.1 1.2 1.3	Description1. EXCAVATION & BACK FIITrench excavation in ordinarysoil to a depth 800mm* 600mmwidth to bared the pipe for12,861.05 meters length.Trench excavation in weatheredrock soil formation to a depth800mm* 60mm width to baredthe pipe for 1,000 meters length.Load & cart away all excavatedweathered rock soil formation	Unit L W m ³ m ³	Qty ORK 6,173.30 480.00	(ETB) 174.48 249.62 73.90	(ETB) 1,077,106.1 6 119,816.24 35,474.18			

Chen	t: Czech Development Agency					<u>.</u>		
1.4	Back fill with selected materi	al	m ³	6,653.30	83.93	558,425.18		
	(provide a bedding for the pip	pe						
	with 300mm impervious cla	ay						
	layer well consolidated) fro	m						
	quarry waste & compact	in						
	layers.							
	Total Carried to summary1,790,821.7							
	6							
	2. SUPPLY & INSTALLATION OF PIPES							
2.1	Supply and Install HDPE pipe for the gravity distribution pipe network							
	(Class- PN-16), the cost includes welding the pipe for connection , the							
	quality of the welding shall approved by the consultant with the expense							
	of the contractor.							
	Note that, 5% additional length on each pipe item for contingency.							
	Outer Diameter (OD) 110 mm m 364.35 556.75 202,851.86							
	Outer Diameter (OD) 90 mm	m	5,	158.65	391.83	2,021,313.83		
	Outer Diameter (OD) 75 mm	m	20	8.95	314.80	65,777.46		
	Outer Diameter (OD) 63 mm	m	2,4	427.60	263.16	638,847.22		
	Outer Diameter (OD) 50 mm	m	5,:	372.85	243.34	1,307,429.32		
	Outer Diameter (OD) 32 mm	m	15	4.35	186.42	28,773.93		
	Outer Diameter (OD) 25 mm	m	17	4.30	80.63	31,483.81		
	Total Carried to summary	••••	••••	•••••	•••••	4,296,477.42		
	3. SUPPLY & INSTALLATIO)N (OF I	FITTINGS	5			
3.1	Supply & install fittings for the	gra	vity	distributio	n pipe lir	ne with (PN-16)		
	Fittings, the cost includes syntl	hetio	c fib	er and pai	nt for jo	ining the pipes		
	with the fitting, the quality of the	he f	itting	g shall app	proved by	the consultant		
	with the expense of the contra	ctor	the	fittings s	hall be f	ixed as per the		
	with the expense of the contract		,	8		ince us per the		

a) HDPE Coupling with Outer

<u></u>					
	diameter,				
	Ø 110 mm	pcs	1.00	2,708.79	2,708.79
	Ø 75 mm	pcs	2.00	488.93	977.86
	Ø 63 mm	pcs	6.00	455.33	2,731.98
	Ø 50 mm	pcs	15.00	317.34	4,760.10
	Ø 25 mm	pcs	2.00	77.58	155.16
	b) GI Gate valve with internal diameter,				0.00
	Ø 63 mm	pcs	1.00	2,138.93	2,138.93
	Ø 50 mm	pcs	1.00	1,379.94	1,379.94
	Ø 38 mm	pcs	11.00	818.84	9,007.24
	Ø 18.5 mm	pcs	2.00	250.08	500.16
	c) GI Pressure release valve with internal diameter,				
	Ø 50 mm	pcs	1.00	1,379.94	1,379.94
	Ø 38 mm	pcs	1.00	818.84	818.84
	d) HDPE Tee with Outer diameter,				0.00
	Ø 110 mm	pcs	1.00	2,570.87	2,570.87
	Ø 75 mm (Cross tee)	pcs	1.00	593.33	593.33
	Ø 63 mm	pcs	3.00	455.33	1,365.99
	Ø 50 mm	pcs	2.00	386.34	772.68
	e) HDPE-GI Male Adapter with Outer diameter,				
	Ø 110 mm	pcs	1.00	2,570.87	2,570.87
	Ø 75 mm	pcs	2.00	593.33	1,186.66
	Ø 63 mm	pcs	5.00	455.33	2,276.65
	Ø 50 mm	pcs	12.00	317.34	3,808.08
	Ø 25 mm	pcs	2.00	85.08	170.16

			•••••	
f) HDPE Reducer with Outer				
diameter,				
Ø 110 mm to Ø 75 mm	pcs	1.00	1,862.93	1,862.93
Ø 110 mm to Ø 50 mm	pcs	1.00	1,862.93	1,862.93
Ø 75 mm to Ø .63 mm	pcs	1.00	689.93	689.93
Ø 75 mm to Ø 50 mm	pcs	1.00	689.94	689.94
Ø 63 mm to Ø 50 mm	pcs	7.00	689.94	4,829.58
Ø 50 mm to Ø .25mm	pcs	2.00	308.24	616.48
g) HDPE Female Adaptor with				
Outer diameter,				
Ø 75 mm	pcs	3.00	593.33	1,779.99
Ø 63 mm	pcs	2.00	455.33	910.66
Ø 50 mm	pcs	11.00	317.34	3,490.74
Ø 25 mm	pcs	2.00	85.08	170.16
Total Carried to summary	58,777.57			

7.3 10	7.3 100 M ³ CAPACITY RC RESERVOIR					
	Summary of Bill of Quantity					
No	Description	Amount				
110.	Description	(ETB)				
	A. SUB STRUCTURE					
1	Excavation and earth work	32,710.08				
2	Concrete works	92,344.12				
3	Steel reinforcement	165,460.20				
	Total A	290,514.40				
	B. SUPER STRUCTURE					
1	Concrete works	132,479.90				
2	Form work	52,081.56				
3	Steel reinforcement	529,141.08				

'Awa	yo Keraro Kebele' Water Supply Project	Detaile	d Design Ro	eport		
Client 4	:: Czech Development Agency Metal works			· · · · · · · · · · · · · · · · · · ·	0.550.61	
5	Finishing				8,550.61	
6	Pipe and fitting installation				135,802.06	
C	Total B				101,917.82	
	Total A + B	•••••			959,973.03	
A. SUB STRUCTURE						
No	Description	Unit	Oty	Data	Amount	
110.	Description	Omt	Quy	(ETP)	(ETR)	
	1 EVCAVATION & FADTH WODE	7		(LID)		
1.01	I. EACAVATION & EARTH WORK		I	1		
1.01	Clear and remove top soil to an	m-	47.10	37.47	1,764.84	
1.00	average depth of 200mm.	3				
1.02	Bulk excavation in ordinary soil to a	m	44.51	100.51	4,473.65	
	depth not exceeding 1500mm to					
	remove expansive soil material.	-				
1.03	Load & cart away all excavated	m ³	53.93	73.90	3,985.39	
	material to an appropriate trip.					
1.04	Back fill with selected material (m ³	19.08	587.90	11,214.49	
	300mm impervious clay layer well					
	consolidated) from quarry waste &					
	compact in layers (for both the water					
	reservoir and pavement construction)					
1.05	250mm thick basaltic stone hardcore	m ²	63.59	177.27	11,271.71	
	well rolled, consolidated and blinded					
	with crushed stone.					
	Total Carried to summary	•••••	••••••		32,710.08	
	2. CONCRETE WORK				,	
2.01	100 mm lean concrete quality C-5,					
	with minimum cement content of 150					
	kg /m3, of concrete:					
	Under reservoir base slab	m ²	55.65	223.64	12,446.39	
2.02	Reinforced concrete quality C-30,360				.,	
	kg of cement/m3 filled in to form					
	work & vibrated around rod					

Client	: Czech Development Agency					
	reinforcement (Formwork and					
	reinforcement measured separately)					
	1					
	hoos alah	3				
		m	15.30	5,220.45	79,897.74	
	Total Carried to summary	• • • • • • • • • •	•••••	•••••	92,344.12	
	3. STEEL REINFORCEMENT					
3.01	Mild steel reinforcement according to	structu	ural drawin	gs. Price inc	ludes cutting,	
	bending, placing in position and tying wire.					
	a) Dia. 12 mm deformed bar	kg	1,201.07	82.98	99,664.53	
	a) Dia. 10 mm deformed bar	kg	792.91	82.98	65,795.67	
	Total Carried to summary	• • • • • • • • •	• • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	165,460.20	
B.	SUPER STRUCTURE					
No.	Description	Unit	Qty	Rate	Amount	
				(ETB)	(ETB)	
	1. CONCRETE WORK					
1.01	Reinforced concrete quality C-30,360					
	kg of cement/m3 filled in to form					
	work & vibrated around rod					
	reinforcement (Formwork and					
	reinforcement measured separately)					
	a) Reservoir wall	m ³	11.75	5,220.45	61,342.94	
	b) Reservoir roof slab	m ³				
		111	12.67	5,220.45	66,125.33	
	c) Reservoir haunch	m ³	12.67 0.96	5,220.45 5,220.45	66,125.33 5,011.63	
	c) Reservoir haunch Total Carried to summary	m ³	12.67 0.96	5,220.45 5,220.45	66,125.33 5,011.63 132,479.90	
	 c) Reservoir haunch Total Carried to summary 2. FORM WORK 	m ³	12.67 0.96	5,220.45 5,220.45	66,125.33 5,011.63 132,479.90	
2.01	 c) Reservoir haunch Total Carried to summary 2. FORM WORK Provide, cut and fix in position sawn 	m ³	12.67 0.96	5,220.45	66,125.33 5,011.63 132,479.90	
2.01	 c) Reservoir haunch Total Carried to summary 2. FORM WORK Provide, cut and fix in position sawn structural wood or steel formwork 	m ³	12.67 0.96	5,220.45	66,125.33 5,011.63 132,479.90	
2.01	 c) Reservoir haunch Total Carried to summary 2. FORM WORK Provide, cut and fix in position sawn structural wood or steel formwork whichever is appropriate. 	m ³	12.67 0.96	5,220.45	66,125.33 5,011.63 132,479.90	
2.01	 c) Reservoir haunch Total Carried to summary 2. FORM WORK Provide, cut and fix in position sawn structural wood or steel formwork whichever is appropriate. a) In the internal wall 	m ³	12.67 0.96 55.95	5,220.45 5,220.45 272.54	66,125.33 5,011.63 132,479.90 15,249.92	
2.01	 c) Reservoir haunch Total Carried to summary 2. FORM WORK Provide, cut and fix in position sawn structural wood or steel formwork whichever is appropriate. a) In the internal wall b) To the external wall 	m ³ 	12.67 0.96 55.95 55.95	5,220.45 5,220.45 272.54 272.54	66,125.33 5,011.63 132,479.90 15,249.92 15,249.92	

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report

<u>Client</u>	: Czech Development Agency				
	d) Haunch	m^2	21.10	272.54	5,750.81
	Total Carried to summary	•••••	••••		52,081.56
	3. STEEL REINFORCEMENT				
3.01	Mild steel reinforcement according to				
	structural drawings. Price includes				
	cutting, bending, placing in position				
	and tying wire.				
	a) Dia. 8 mm deformed bar	kg	780.09	82.98	64,731.51
-	b) Dia. 10 mm deformed bar	kg	1,458.25	82.98	121,005.40
-	c) Dia. 14 mm deformed bar	kg	4,138.40	82.98	343,404.16
	Total Carried to summary	•••••	•••••		529,141.08
	4. METAL WORK				
4.01	Metal Doors in 38 X 38 X1.5 mm				
	thick LTZ Steel Profile Covered				
	with 1.0 mm Galvanized Ribbed Steel				
	Sheet Where Shown On Drawings				
	including hardware, approved				
	cylinder lock set , one coat of anti rust				
	Paint and two coat of metal paint.				
-	MD= size: 1200*1200mm (for	no	1.00	2,202.25	2,202.25
	reservoir top slab man hole cover)				
4.02	Supply, fabricate and mount RT 64-	no	2.00	3,174.18	6,348.36
	3mm thick for the external and				
	internal ladder according to the				
	structural drawing .Price shall include,				
	8mm thick base plate with 7mm weld				
	all around with the ladder, 10mm				
	diameter four rock bolt & one coat of				
	antirust and two coats of synthetic				
	enamel painting and all other				
	necessary accessories to complete the				
	work.				
	Total Carried to summary	•••••	•••••	•••••	8,550.61

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report

Client	: Czech Development Agency				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	5. FINISHING				
5.01	Apply three coats of plastering in				
	cement mortar (1:3). Price shall				
	include pre-cleaning and preparation				
	of the surface.				
	a) To internal wall & internal slab	m²	137.13	206.63	28,335.80
	surfaces				
	b)To exposed reservoir top slab	m²	107.98	206.63	22,312.86
5.02	Apply two coats of plastering to	m²	71.54	188.93	13,515.64
	external wall surface in cement mortar				
	(1:3). Price shall include pre-cleaning				
	and preparation of the surface.				
5.03	Apply 3 coat of plastic emulsion	m²	5.39	174.46	940.03
	painting at external part of the top				
	slab sides. Price shall include pre-				
	cleaning and preparation of the				
	surface.				
5.04	Apply Tyro-line rendering at external	m²	62.74	302.81	18,997.45
	part of the vertical wall surface. Price				
	shall include pre-cleaning and				
	preparation of the surface.				
5.05	50mm thick smooth finished cement	m²	46.54	221.55	10,311.52
	mortar screed (1:3) reservoir floor				
	finish with glass stripping for crack				
	protection c/c 2000mm both ways.				
	Price includes glass. All as per				
	engineers approval.				
5.06	C-20 concrete pavement all around	m ³	6.6	4,388.14	28,935.40
	the reservoir				
5.07	Dia. 400mm half concrete pipe ditch	ml	40.8	305.08	12,453.37
	around pavement on & including.				
	100mm thick red ash base and jointed				
	in cement mortar mixes (1:2). Price				

	shall include side support stone on the					
	external side of the ditch.					
	Total Carried to summary					135.802.06
	6 PIPE & FITTING INSTALLATION	•••••				100,002.00
6.01	Sumply & install Direct for the inlat and dist				ana ationa ta ti	
6.01	Suppry & instant tipes for the finet and distribution pipe connections to the reservoir					
	fixtures according to the drawing complete with the necessary connecting pieces such					
	as tees, bends, unions, etc. The unit price sl	nall in	nclu	de all n	ecessary assis	stance to the
	installation works such as supports for hori	zonta	l an	d vertio	cal pipes and p	providing
	flanged pipes. The installation shall be test	ed at a	a pr	essure	of 10 kg/cm ²	at the expense
	of the contractor.					
	a) Diameter 75 mm for the inlet, over	ml	l	12	1.560.32	18,723,84
	flow, vent & drainage pipe(GI-Class-B)			12	1,500.52	10,723.01
	b) Diameter 75 mm outlet pipe(GI-Class-	ml	l	6	1.560.32	9.361.92
	B Pipe)			-	_,	
6.02	Supply & fix flanged Gate Valves of					
	approved quality complete with unions,					
	hand wheels etc.					
	a) Diameter 75 mm	pcs	S	3	12,212.93	36,638.79
	b) Diameter 100 mm	pcs	S	1	13,196.87	13,196.87
6.03	Supply & fix Flanged Water Meter of					
	approved quality complete with unions,					
	adapter to HDPE pipe etc.					
	Diameter 100 mm	pcs	S	1	19,406.87	19,406.87
6.04	Supply & install vent caps of rigid PVC					
	to be connected to the roof terminal of					
	vent pipe.					
	Diameter 80 mm	pcs	8	2	731.33	1,462.66
6.05	Floor Drain, for the out let pipe, as shown					
	in the drawing, of approved quality					
	complete with all accessories including a					
	tran etc					
	Diameter 100 mm	nce	2	1	3 126 87	3 126 87
	Total Carried to summary	<u> </u>	•••••	1	5,120.07	101,917.82

7.4 INLET AND OUTLET VALVE CHAMBER FOR 100M ³ /50M ³ RESERVIOR							
Summary of Bill of Quantity							
No.	Description					Amount	
					(E'	ТВ)	
1	Excavation and earth work				7,3	93.38	
2	Masonry works					,440.37	
3	Concrete works				5.8	349.98	
4	Staal rainforcomont				15	66 51	
4	Steel reinforcement	•••••		••••	4,300.31		
5	Form work	• • • • • • • • • • • •	•••••	•••••	4,566.51		
6	Metal works	•••••		•••••	6,856.56		
7	Finishing				11,447.30		
Total carried to combined summary					68,	,120.61	
No.	Description	Unit	Qty	Rate		Amount	
No.	Description	Unit	Qty	Rate (ETB)		Amount (ETB)	
No.	Description 1. EXCAVATION & EARTH WORK	Unit	Qty	Rate (ETB)		Amount (ETB)	
No. 1.01	Description 1. EXCAVATION & EARTH WORK Clear and remove top soil to an average	Unit m ²	Qty 21.0	Rate (ETB) 37.47		Amount (ETB) 788.37	
No. 1.01	Description 1. EXCAVATION & EARTH WORK Clear and remove top soil to an average depth of 200mm.	Unit m ²	Qty 21.0 4	Rate (ETB) 37.47		Amount (ETB) 788.37	
No. 1.01 1.02	Description1. EXCAVATION & EARTH WORKClear and remove top soil to an average depth of 200mm.Bulk excavation in ordinary soil to a depth	Unit m ² m ³	Qty 21.0 4 14.4	Rate (ETB) 37.47 100.54		Amount (ETB) 788.37 1,452.80	
No. 1.01 1.02	Description1. EXCAVATION & EARTH WORKClear and remove top soil to an average depth of 200mm.Bulk excavation in ordinary soil to a depth not exceeding 1500mm to remove	Unit m ² m ³	Qty 21.0 4 14.4 5	Rate (ETB) 37.47 100.54		Amount (ETB) 788.37 1,452.80	
No. 1.01 1.02	Description1. EXCAVATION & EARTH WORKClear and remove top soil to an average depth of 200mm.Bulk excavation in ordinary soil to a depth not exceeding 1500mm to remove expansive soil material.	Unit m ² m ³	Qty 21.0 4 14.4 5	Rate (ETB) 37.47 100.54		Amount (ETB) 788.37 1,452.80	
No. 1.01 1.02 1.03	Description1. EXCAVATION & EARTH WORKClear and remove top soil to an average depth of 200mm.Bulk excavation in ordinary soil to a depth not exceeding 1500mm to remove expansive soil material.Load & cart away all excavated material to	Unit m ² m ³	Qty 21.0 4 14.4 5 14.4	Rate (ETB) 37.47 100.54 73.90		Amount (ETB) 788.37 1,452.80 1,067.86	
No. 1.01 1.02 1.03	Description1. EXCAVATION & EARTH WORKClear and remove top soil to an average depth of 200mm.Bulk excavation in ordinary soil to a depth not exceeding 1500mm to remove expansive soil material.Load & cart away all excavated material to an appropriate tip.	Unit m ² m ³	Qty 21.0 4 14.4 5 14.4 5	Rate (ETB) 37.47 100.54 73.90		Amount (ETB) 788.37 1,452.80 1,067.86	
No. 1.01 1.02 1.03 1.04	Description1. EXCAVATION & EARTH WORKClear and remove top soil to an average depth of 200mm.Bulk excavation in ordinary soil to a depth not exceeding 1500mm to remove expansive soil material.Load & cart away all excavated material to an appropriate tip.Back fill with selected material (300mm	Unit m ² m ³ m ³	Qty 21.0 4 14.4 5 14.4 5 3.61	Rate (ETB) 37.47 100.54 73.90 587.90		Amount (ETB) 788.37 1,452.80 1,067.86 2,123.79	
No. 1.01 1.02 1.03 1.04	Description1. EXCAVATION & EARTH WORKClear and remove top soil to an average depth of 200mm.Bulk excavation in ordinary soil to a depth not exceeding 1500mm to remove expansive soil material.Load & cart away all excavated material to an appropriate tip.Back fill with selected material (300mm impervious clay layer well consolidated)	Unit m ² m ³ m ³	Qty 21.0 4 14.4 5 14.4 5 3.61	Rate (ETB) 37.47 100.54 73.90 587.90		Amount (ETB) 788.37 1,452.80 1,067.86 2,123.79	
No. 1.01 1.02 1.03 1.04	Description1. EXCAVATION & EARTH WORKClear and remove top soil to an average depth of 200mm.Bulk excavation in ordinary soil to a depth not exceeding 1500mm to remove expansive soil material.Load & cart away all excavated material to an appropriate tip.Back fill with selected material (300mm impervious clay layer well consolidated) from quarry waste & compact in layers.	Unit m ² m ³ m ³	Qty 21.0 4 14.4 5 14.4 5 3.61	Rate (ETB) 37.47 100.54 73.90 587.90		Amount (ETB) 788.37 1,452.80 1,067.86 2,123.79	
No. 1.01 1.02 1.03 1.04 1.05	Description1. EXCAVATION & EARTH WORKClear and remove top soil to an average depth of 200mm.Bulk excavation in ordinary soil to a depth not exceeding 1500mm to remove expansive soil material.Load & cart away all excavated material to an appropriate tip.Back fill with selected material (300mm impervious clay layer well consolidated) from quarry waste & compact in layers.150mm thick basaltic stone hardcore well	Unit m ² m ³ m ³ m ²	Qty 21.0 4 14.4 5 14.4 5 3.61 13.8	Rate (ETB) 37.47 100.54 73.90 587.90 142.07		Amount (ETB) 788.37 1,452.80 1,067.86 2,123.79 1,960.57	

<u>Client</u> :	Czech Development Agency				
	crushed stone .for both foundation & base				
	slab.				
	Total Carried to summary	• • • • • • • • •		•••••	7,393.38
	2. MASONRY WORKS				
2.01	40cm thick Stone masonry wall in cement				
	mortar (1:3)				
	a) outlet valve chamber	m ³	8.89	1,769.89	15,737.86
	b) inlet valve chamber	m ³	6.61	1,769.89	11,702.51
	Total Carried to summary	• • • • • • • • •	••••••		27,440.37
	3. CONCRETE WORK				
3.01	80 mm lean concrete quality C-5, with	m ²	13.8	223.64	3,086.23
	minimum cement content of 150 kg /m3,		0		
	of concrete: for both foundation & base				
	slab.				
3.02	Reinforced concrete quality C-25,360 kg				
	of cement/m3 filled in to form work &				
	vibrated around rod reinforcement				
	(Formwork and reinforcement measured				
	separately). Top slab				
	a) outlet valve chamber	m ³	0.81	4,702.56	3,818.48
	b) inlet valve chamber	m ³	0.43	4,702.56	2,031.51
	Total Carried to summary	•••••	•••••	Birr	5,849.98
	4. STEEL REINFORCEMENT				
4.01	Mild steel reinforcement according to				
	structural drawings. Price includes cutting,				
	bending, placing in position and tying				
	wire.				
	Dia. 8 mm deformed bar	kg	55.03	82.98	4,566.51
	5. FORM WORK				
5.01	Provide, cut and fix in position sawn				
	structural wood or steel formwork				
	whichever is appropriate.				

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report

Client	Czech Development Agency			V	RESOURCE DEVELOPMENT, HAWASSA
	for both inlet & outlet chamber	m ²	15.64	272.54	4,262.53
	6. METAL WORK				
6.01	Metal Doors in 38 X 38 X1.5 mm thick				
	LTZ Steel Profile Covered with 1.0 mm				
	Galvanized Ribbed Steel Sheet including				
	hardware, approved cylinder lock set, one				
	coat of anti rust Paint and two coat of				
	metal paint. Each for inlet & outlet				
	chamber				
	750X1750mm	pcs	2.00	3,428.28	6,856.56
	7. FINISHING				
7.01	Apply two coats of plastering to internal	m²	55.40	206.63	11,447.30
	and external wall surface in cement mortar				
	(1:3). Price shall include pre-cleaning and				
	preparation of the surface. For both inlet &				
	out let				
1			1	1	

7.5 50M ³ CAPACITY RC INTAKE WELL						
	Summary Of Bill Of Quantities					
No.	Description Unit Qty Rate	Amount ETB				
	A. SUB STRUCTURE					
1	Excavation and earth work	29,460.69				
2	Concrete works	53,442.70				
3	Steel reinforcement	31,955.52				
	Total A	114,858.91				
	B. SUPER STRUCTURE					
1	Concrete works	69,792.37				
2	Form work	36,818.89				
3	Steel reinforcement	104,090.38				
4	Metal works	8,550.61				
5	Finishing	71,967.83				

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report					
Client 6	: Czech Development Agency Pipe and fitting installation	•••••		·····	107,287.22
	Total B		•••••		398.507.30
	Total Carried to combined summary	•••••	•••••		513,366.20
					,
	A-SUB STRUCTURE				
No.	Description	Unit	Qty	Rate	Amount ETB
	1. EXCAVATION & EARTH WORK				
1.01	Clear and remove top soil to an average	m ²	31.40	37.47	1,176,56
	depth of 200mm.		21110	57117	1,170,000
1.02	Bulk excavation in ordinary soil to a depth				
	not exceeding 1500mm to remove	m ³	44.51	100.51	4,473.65
	expansive soil material.				
1.03	Load & cart away all excavated material to	m ³	50.79	73.90	3,753.34
	an appropriate trip.				
1.04	Back fill with selected material (300mm				
	impervious clay layer well consolidated)				
	from quarry waste & compact in layers.				
	(for both the water reservoir and pavement	m ³	17.01	587.90	10,003.05
1.05	250mm thick baseltic stone bardeers well				
1.05	rollad consolidated and blinded with	m^2	56 72	177 27	10.054.00
	crushed stone	111	30.72	177.27	10,034.09
	Total Carried to sur	many		20 460 60	
		Total Carried to summary			
2.01	2. CONCRETE WORK				
2.01	minimum compart content of 150 kg /m3 of				
	concrete:				
	Under reservoir base slab	m ²	36 94	223 64	8 261 66
2 02	Reinforced concrete quality C-30 360 kg of		50.74	223.07	0,201.00
2.02	cement/m3 filled in to form work &				
	vibrated around rod reinforcement				
	(Formwork and reinforcement measured				
Chem	separately)			•••••	
------	---	--	--	--------------------------------------	---
	base slab	m ³	8.65	5,220.45	45,181.04
	Total Carried to summary.	• • • • • • • • •	•••••	•••••	53,442.70
	<u>3. STEEL REINFORCEMENT</u>				
3.01	Mild steel reinforcement according to				
	structural drawings. Price includes cutting,				
	bending, placing in position and tying wire.				
	a)8mm deformed bar	kg	385.1 0	82.98	31,955.52
	Total Carried to summary	•••••			31,955.52
	<u>B-SUPER STRUCTURE</u>				
No.	Description	Unit	Qty	Rate	Amount ETB
	1. CONCRETE WORK				
1.01	Reinforced concrete quality C-30,360 kg of				
1.01	Reinforced concrete quality C-30,360 kg of cement/m3 filled in to form work &				
1.01	Reinforced concrete quality C-30,360 kg of cement/m3 filled in to form work & vibrated around rod reinforcement				
1.01	Reinforced concrete quality C-30,360 kg of cement/m3 filled in to form work & vibrated around rod reinforcement (Formwork and reinforcement measured				
1.01	Reinforced concrete quality C-30,360 kg of cement/m3 filled in to form work & vibrated around rod reinforcement (Formwork and reinforcement measured separately)				
1.01	Reinforced concrete quality C-30,360 kg of cement/m3 filled in to form work & vibrated around rod reinforcement (Formwork and reinforcement measured separately) b) In reservoir wall	m ³	7.09	5,220.45	37,000.50
1.01	Reinforced concrete quality C-30,360 kg of cement/m3 filled in to form work & vibrated around rod reinforcement (Formwork and reinforcement measured separately) b) In reservoir wall c) In reservoir roof slab	m ³ m ³	7.09 5.90	5,220.45 5,220.45	37,000.50 30,783.30
1.01	Reinforced concrete quality C-30,360 kg of cement/m3 filled in to form work & vibrated around rod reinforcement (Formwork and reinforcement measured separately) b) In reservoir wall c) In reservoir roof slab d) haunch	m ³ m ³ m ³	7.09 5.90 0.38	5,220.45 5,220.45 5,220.45	37,000.50 30,783.30 2,008.57
1.01	Reinforced concrete quality C-30,360 kg of cement/m3 filled in to form work & vibrated around rod reinforcement (Formwork and reinforcement measured separately) b) In reservoir wall c) In reservoir roof slab d) haunchTotal Carried to summary	m ³ m ³ m ³	7.09 5.90 0.38	5,220.45 5,220.45 5,220.45	37,000.50 30,783.30 2,008.57 69,792.37
1.01	Reinforced concrete quality C-30,360 kg of cement/m3 filled in to form work & vibrated around rod reinforcement (Formwork and reinforcement measured separately) b) In reservoir wall c) In reservoir roof slab d) haunch Total Carried to summary 2. FORM WORK	m ³ m ³ m ³	7.09 5.90 0.38	5,220.45 5,220.45 5,220.45	37,000.50 30,783.30 2,008.57 69,792.37
2.01	Reinforced concrete quality C-30,360 kg of cement/m3 filled in to form work & vibrated around rod reinforcement (Formwork and reinforcement measured separately) b) In reservoir wall c) In reservoir roof slab d) haunch Total Carried to summary 2. FORM WORK Provide, cut and fix in position sawn	m ³ m ³ m ³	7.09 5.90 0.38	5,220.45 5,220.45 5,220.45	37,000.50 30,783.30 2,008.57 69,792.37
2.01	Reinforced concrete quality C-30,360 kg of cement/m3 filled in to form work & vibrated around rod reinforcement (Formwork and reinforcement measured separately) b) In reservoir wall c) In reservoir roof slab d) haunch Total Carried to summary 2. FORM WORK Provide, cut and fix in position sawn structural wood or steel formwork	m ³ m ³ m ³	7.09 5.90 0.38	5,220.45 5,220.45 5,220.45	37,000.50 30,783.30 2,008.57 69,792.37
2.01	Reinforced concrete quality C-30,360 kg of cement/m3 filled in to form work & vibrated around rod reinforcement (Formwork and reinforcement measured separately) b) In reservoir wall c) In reservoir roof slab d) haunchTotal Carried to summary2. FORM WORKProvide, cut and fix in position sawn structural wood or steel formwork whichever is appropriate.	m ³ m ³ m ³	7.09 5.90 0.38	5,220.45 5,220.45 5,220.45	37,000.50 30,783.30 2,008.57 69,792.37
2.01	Reinforced concrete quality C-30,360 kg of cement/m3 filled in to form work & vibrated around rod reinforcement (Formwork and reinforcement measured separately) b) In reservoir wall c) In reservoir roof slab d) haunch Total Carried to summary 2. FORM WORK Provide, cut and fix in position sawn structural wood or steel formwork whichever is appropriate. a) In the internal wall	m ³ m ³ m ³	7.09 5.90 0.38 35.80	5,220.45 5,220.45 5,220.45 	37,000.50 30,783.30 2,008.57 69,792.37 9,755.84
2.01	Reinforced concrete quality C-30,360 kg of cement/m3 filled in to form work & vibrated around rod reinforcement (Formwork and reinforcement measured separately) b) In reservoir wall c) In reservoir roof slab d) haunch Total Carried to summary 2. FORM WORK Provide, cut and fix in position sawn structural wood or steel formwork whichever is appropriate. a) In the internal wall b) To the external wall	m ³ m ³ m ³ m ² m ²	7.09 5.90 0.38 35.80 38.06	5,220.45 5,220.45 5,220.45 	37,000.50 30,783.30 2,008.57 69,792.37 9,755.84 10,372.00

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report						
<u>Chem</u>	d) Haunch	m ²	21.10	272.54	5,750.81	
	Total Carried to summary	•••••	•••••	• • • • • • • • • • • •	36,818.89	
3.01	3. STEEL REINFORCEMENT Mild steel reinforcement according to structural drawings. Price includes cutting, bending, placing in position and tying wire. a) 8 mm deformed bar	kg	1,254.4	82.98	104,090.38	
			0			
	Total Carried to summary	•••••	•••••	• • • • • • • • • • • • • • •	104,090.38	
4.01	 <u>4. METAL WORK</u> Metal Doors in 38 X 38 X1.5 mm thick LTZ Steel Profile Covered with 1.0 mm Galvanized Ribbed Steel Sheet Where Shown On Drawings including hardware, approved cylinder lock set , one coat of anti rust Paint and two coat of metal paint. <u>METAL DOORS</u> MD= size: 1200*1200mm (for reservoir top slab man hole cover) Supply, fabricate and mount RT 64-3mm thick for the external and internal ladder according to the structural drawing .Price shall include, 8mm thick base plate with 7mm weld all around with the ladder, 10mm diameter four rock bolt & one coat of 	no	1.00	2,202.2 5 3,174.1 8	2,202.25	
	painting and all other necessary accessories to complete the work.					
	Total Carried to summary.				8,550.61	
					, -	
	<u>5. FINISHING</u>					

5.01	Apply three coats of plastering in cement	• • • • • •	<u></u>		
0.01	mortar (1:3) Price shall include pre-				
	cleaning and preparation of the surface				
	a) To internal wall & internal slab surfaces	m ²	105 77	206 63	21 856 25
	h)To exposed reservoir top slab	m ²	44 12	206.63	9 115 90
5.02	Apply two coats of plastering to external		11.12	200.05	9,115.90
5.02	wall surface in cement mortar (1:3) Price				
	shall include pro cleaning and propagation of	m²	43.36	188.93	8,192.76
	the outfood				
5.02	Apply 2 cost of plastic emplaier pointing at				
5.05	Appry 5 coat of plastic emulsion painting at				
	external part of the top stab sides. Price shall	m²	3.67	174.46	640.93
	include pre-cleaning and preparation of the				
5.04	surface.				
5.04	Apply tyro line rendering at external part of		1.10	202.01	2.42.20
	the vertical wall surface. Price shall include	m²	1.13	302.81	342.30
	pre-cleaning and preparation of the surface.				
5.05	50mm thick smooth finished cement mortar				
	screed (1:3) reservoir floor finish with glass				
	stripping for crack protection c/c 2000mm	m²	25.50	221.55	5,650.56
	both ways. Price include glass. All as per				
	engineers approval.				
5.06	C-20 concrete pavement all around the	m ³	3.8	4,388.1	16 589 63
	reservoir	111	5.0	4	10,507.05
5.07	Diameter 400mm half concrete pipe ditch				
	around pavement on & including . 100mm				
	thick red ashes base and jointed in cement	ml	21.4	205.09	0 570 51
	mortar mix (1:2). Price shall include side	1111	51.4	303.08	9,579.51
	support stone on the external side of the				
	ditch.				
	Total Carried to summary		• • • • • • • • • • • • • •	•••••	71,967.83
	6.PIPE & FITTING INSTALLATION				

Clinet					THE DEVELOPMENT NUMBER
6.01	Supply & install Pipes for the inlet and			<u></u>	
	distribution pipe connections to the				
	reservoir fixtures according to the drawing				
	complete with the necessary connecting				
	pieces such as tees, bends, unions, etc. The				
	unit price shall include all necessary				
	assistance to the installation works such as				
	supports for horizontal and vertical pipes				
	and providing flanged pipes. The				
	installation shall be tested at a pressure of				
	10 kg/cm^2 at the expense of the contractor.				
	a) Diameter 50 mm for the inlet, over	m	12		
	flow, vent & drainage pipe(GI-Class-B)	111	12	784.64	9,415.68
	b) Diameter 100 mm outlet pipe(GI Pipe)	m	6	1,543.67	9,262.02
6.02	Supply & fix flanged GI Gate Valves of				
	approved quality complete with unions,				
	hand wheels etc.				
	a) Diameter 25 mm	pcs	2	305.84	611.68
	b) Diameter 50 mm	pcs	7	1,379.94	9,659.58
	c) Diameter 75 mm	pcs	2	12,212.93	24,425.86
	d) Diameter 100 mm	pcs	1	13,196.87	13,196.87
6.03	Supply & fix Flanged Water Meter of				
	approved quality complete with unions,				
	adapter to HDPE pipe, reducer, etc.				
	Diameter 100 mm	pcs	1	19,406.87	19,406.87
6.04	Supply & install vent caps of rigid PVC to				
	be connected to the roof terminal of vent				
	pipe.		2	701.00	1 460 66
6.05	Diameter 80 mm	pcs	2	/31.33	1,462.66
0.05	in the drawing. of approved quality				
	complete with all accessories including a				

	Total Carried to summary	•••••	•••••	•••••	107,287.22
	Ø 63 mm to Ø 32mm	pcs	2	689.94	1,379.88
	d) Reducer Outer Diameter (OD)				
	Ø 32 mm	pcs	2	113.66	227.32
	Ø 63 mm	pcs	3	455.33	1,365.99
	c) Fem. Adaptor Outer Diameter (OD)				0.00
	Ø 32 mm	pcs	2	113.66	227.32
	Ø 63 mm	pcs	3	455.33	1,365.99
	Ø 90 mm	pcs	2	2,570.87	5,141.74
	b) Mal. Adaptor Outer Diameter (OD)	_			
	Ø 32 mm	pcs	2	113.66	227.32
	Ø 63 mm	pcs	3	455.33	1,365.99
	Ø 90 mm	pcs	2	2,708.79	5,417.58
	a) Coupling with Outer Diameter (OD)				
6.06	Supply & fix HDPE fittings of approved quality complete with the necessary accessories				
	Diameter 100 mm	pcs	1	3,126.87	3,126.87
	etc.				
	removable strainer cap fitted to smell trap,				

7.6 PU	7.6 PUPLIC WATER POINT						
	Summary Of Bill Of Quantities						
No.	Description	Amount					
1		(ETB)					
1	Excavation and earth work	13,407.98					
2	Concrete Works	16,560.55					
3	Steel reinforcement	6,495.60					
4	Masonry works	14,823.54					
5	Metal works	3,548.28					
6	Soak away pit	457.49					

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report							
7 Pipe & fitting installation							
8	Finishing works		4,362.57				
	TOTAL CARRIED TO COMBINED SU	MMAF	RY		77.332.58		
					<u> </u>		
No.	Description	Unit	Qty	Rate	Amount		
				(ETB)	(ETB)		
	1. EXCAVATION & EARTH WORK						
1.01	Clear and remove top soil to an average	m ²	48.24	37.47	1,807.55		
	depth of 200mm.						
1.02	Bulk excavation in ordinary soil to a depth	m ³	16.98	100.51	1,706.75		
	not exceeding 1500mm to remove						
	expansive soil material.						
1.03	Load & cart away all excavated material	m ³	16.98	73.90	1,254.89		
	to an appropriate tip.						
1.04	Back fill with selected material (300 mm	m ³	8.49	587.91	4,991.62		
	impervious clay layer well consolidated)						
	from quarry waste & compact in layers.						
1.05	150mm thick basaltic stone hardcore well	m ²	0.95	142.07	134.26		
	rolled, consolidated and blinded with						
	crushed stone. For valve chamber						
1.06	300mm thick basaltic stone hardcore well	m ²	10.85	323.89	3,512.91		
	rolled, consolidated and blinded with						
	crushed stone. For water point base						
	Total Carried to summary	•••••			13,407.98		
	2. CONCRETE WORK				1		
2.01	80mm lean concrete quality C-5, with	m ²	10.85	223.64	2,425.60		
	minimum cement content of 150 kg /m3,						
	of concrete:						
2.02	Plain concrete quality C-25,360 kg of						
	cement/m3 filled in to form work &						
	vibrated around						
	a) for water point	m ²	2.05	4,702.56	9,629.20		
1	b) for valve chamber (base slab & walls)	m ²	0.65	4,702.56	3,036.68		

Client: Czech Development Agency......

2.03	Reinforced concrete quality C-25,360 kg	m ³	0.31	4,702.56	1,469.08
	of cement/m3 filled in to form work &				
	vibrated around rod reinforcement				
	(Formwork and reinforcement measured				
	separately). Ring beam				
	Total Carried to summary	•••••		•••••	16,560.55
	3. STEEL REINFORCEMENT				
3.01	Mild steel reinforcement according to				
	structural drawings. Price includes cutting,				
	bending, placing in position and tying				
	wire.				
	Dia. 6 mm deformed bar	kg	27.73	82.98	2,301.41
	Dia. 10 mm deformed bar	kg	50.54	82.98	4,194.19
	Total Carried to summary	•••••	•••••	•••••	6,495.60
	4. MASONRY WORKS				
4.01	Stone masonry construction in cement	m ³	8.38	1,769.89	14,823.54
	mortar (1:3)				
	5. METAL WORK	1	1	I	I
5.01	Metal Doors in 38 X 38 X1.5 mm thick	LTZ S	teel Prof	ile Covered	d with 1.0 mm
	Galvanized Ribbed Steel Sheet Where S	hown (On Draw	vings includ	ing hardware,
	approved cylinder lock set , one coat of anti	rust Pa	aint and t	two coat of 1	netal paint.
	MD= size: 1550X700mm (for valve	pcs	1.00	3,548.28	3,548.28
	chamber man hole cover), including all				
	accessories				
	6. SOAK AWAY PIT				
6.01	Excavate the soil as per drawing and filled	m ³	0.50	907.71	457.49
	with sand				
	7.PIPE & FITTING INSTALLATION				
	Supply & install Pipes for the inlet and d	listribut	ion pipe	connection	s to the water
	point fixtures according to the drawing com	plete w	ith the ne	ecessary con	necting pieces
	such as tees, bends, unions, etc. The insta	llation	shall be	tested at a	pressure of 10
	kg/cm^2 at the expense of the contractor.				
7.01	Plumbing works				

Client	: Czech Development Agency				
	GS pipe Ø= 1 1/2"	m	6.00	684.22	4,105.32
	GS pipe $\emptyset = 1$ "	m	6.00	454.89	2,729.34
	GS pipe $Ø = 3/4$ "	m	3.00	297.91	893.73
7.02	Fitting supply and connection work	1		L	I
	90 deg elbow Ø=11/2"	pcs	6.00	180.49	1,082.94
	Gate valve Ø=1 1/2"	pcs	1.00	818.44	818.44
	Water meter $Ø=1 1/2"$	pcs	1.00	2,750.84	2,750.84
	Union Ø=1 1/2"	pcs	1.00	211.64	211.64
	Union Ø=1"	pcs	2.00	140.24	280.48
	Nipples Ø=1 1/2"	pcs	6.00	156.40	938.40
	Nipples Ø=1"	pcs	4.00	105.74	422.96
	Tee Ø=1 1/2"	pcs	1.00	239.24	239.24
	Cross tee Ø=1"	pcs	2.00	305.84	611.68
	Reducer $\emptyset = 11/2$ " - $\emptyset = 1$ "	pcs	2.00	188.54	377.08
	Reducer $\emptyset = 1$ " - $\emptyset = 3/4$ "	pcs	6.00	91.38	548.28
	Coupling $Ø = 3/4$ "	pcs	6.00	80.26	481.56
	Faucet Ø=3/4"	pcs	6.00	197.44	1,184.64
	Total Carried to summary	••••	•••••		17,676.57
	8. FINISHING WORK				I
8.01	Apply three coats of plastering in cement				
	mortar (1:3). Price shall include pre-				
	cleaning and preparation of the surface.				
	all exposed area	m²	9.13	206.63	1,886.53
8.02	50mm thick smooth finished cement	m²	11.18	221.55	2,476.04
	mortar screed (1:3) water jar seat finish.				
	All as per engineers approval.				
	Total Carried to summary	•••••	•••••	•••••	4,362.57

7.7 SCHOOL WATER POINT

Summary Of Bill Of Quantities

No. Description

Amount

(ETB)

Client:	Czech Development Agency	- MERCONCE D	TM
1	Excavation and earth work		7,543.96
2	Concrete Works	•••••	13,124.61
3	Masonry works		5,357.81
4	Metal works		3,548.28
5	Soak away pit		457.49
6	Pipe & fitting installation	••••••	17,546.10
7	Finishing works		4,528.56
	TOTAL CARRIED TO COMBINED SUMMARY		52,106.81

No.	Description	Unit	Qty	Rate	Amount
				(ETB)	(ETB)
	1. EXCAVATION & EARTH WORK				
1.01	Clear and remove top soil to an average	m ²	28.00	37.47	1,049.16
	depth of 200mm.				
1.02	Bulk excavation in ordinary soil to a depth	m ³	5.36	100.51	539.23
	not exceeding 1500mm to remove				
	expansive soil material.				
1.03	Load & cart away all excavated material	m ³	5.36	73.90	396.47
	to an appropriate tip.				
1.04	Back fill with selected material (300mm	m ³	2.68	587.91	1,577.04
	impervious clay layer well consolidated)				
	from quarry waste & compact in layers.				
1.05	150mm thick basaltic stone hardcore well	m ²	0.95	142.07	134.26
	rolled, consolidated and blinded with				
	crushed stone. For valve chamber				
1.06	300mm thick basaltic stone hardcore well	m ²	11.88	323.89	3,847.81
	rolled, consolidated and blinded with				
	crushed stone. For water point base				
	Total Carried to summary				7,543.96
	2. CONCRETE WORK				
2.01	80 mm lean concrete quality C-15, with	m ²	11.88	223.64	2,656.84
	minimum cement content of 150 kg /m3,				
	of concrete:				

Client:	Czech Development Agency			• • • • • • • • • • • • • • • • • • •	
2.02	Plain concrete quality C-25,360 kg of				
	cement/m3 filled in to form work &				
	vibrated around				
	a) for water point	m ²	2.50	4,702.56	11,752.64
	b) for valve chamber (base slab & walls)	m ²	0.29	4,702.56	1,371.97
	Total Carried to summary	•••••	•••••		13,124.61
	3. MASONRY WORKS				
3.01	Stone masonry construction in cement	m ³	3.03	1,769.89	5,357.81
	mortar (1:3)				
	4. METAL WORK	1	I		
4.01	Metal Doors in 38 X 38 X1.5 mm thick	K LTZ S	Steel Prot	file Covered	with 1.0 mm
	Galvanized Ribbed Steel Sheet Where	Shown	On Drav	vings includi	ng hardware,
	approved cylinder lock set , one coat of anti	rust Pai	int and tw	vo coat of met	al paint.
	MD= size: 1550X700mm (for valve	pcs	1.00	3,548.28	3,548.28
	chamber man hole cover), including all				
	accessories				
	5. SOAK AWAY PIT				
5.01	Excavate the soil as per drawing and filled	m ³	0.50	907.71	457.49
	with sand				
	6.PIPE & FITTING INSTALLATION				
	Supply & install Pipes for the inlet and dis-	tribution	pipe con	nections to th	ne water point
	fixtures according to the drawing complete	with the	necessary	y connecting	pieces such as
	tees, bends, unions, etc. The installation sha	all be tes	ted at a p	pressure of 10	kg/cm^2 at the
	expense of the contractor.				
6.01	Plumbing works				
	GS pipe Ø= 1"	m	3.00	454.89	1,364.67
	GS pipe $\emptyset = 3/4$ "	m	3.00	297.91	893.73
6.02	Fitting supply and connection work				
	90 deg elbow Ø=1"	pcs	2.00	180.49	360.98
	Gate valve Ø=1"	pcs	1.00	818.44	818.44
	Water meter Ø=1"	pcs	1.00	2,750.84	2,750.84
	Union Ø=1"	pcs	8.00	211.64	1,693.12
	Nipples Ø=1"	pcs	8.00	156.40	1,251.20

Client:	Czech Development Agency			• • • • • • • • •	
	Tee Ø=1"	pcs	5.00	239.24	1,196.20
	Cross tee Ø=1"	pcs	2.00	305.84	611.68
	Reducer $\emptyset = 1$ " - $\emptyset = 3/4$ "	pcs	8.00	91.38	731.04
	Coupling $\emptyset = 3/4$ "	pcs	8.00	80.26	642.08
	Faucet Ø=3/4"	pcs	8.00	197.44	1,579.52
6.03	waste water pipe				
	GI pipe Ø=1"	m	6.00	454.89	2,729.34
-	Elbow GI Ø=1"	pcs	8.00	102.19	817.52
-	Tee Ø=1"	pcs	1.00	105.74	105.74
	Total Carried to summary	••••••		•••••	17,546.10
	Total Carried to summary7. FINISHING WORK				17,546.10
7.01	Total Carried to summary7. FINISHING WORKApply three coats of plastering in cement	m ²	11.28	206.63	17,546.10 2,330.79
7.01	Total Carried to summary7. FINISHING WORKApply three coats of plastering in cementmortar (1:3). Price shall include pre-	m ²	11.28	206.63	17,546.10 2,330.79
7.01	 Total Carried to summary 7. FINISHING WORK Apply three coats of plastering in cement mortar (1:3). Price shall include pre-cleaning and preparation of the surface/ all 	m²	11.28	206.63	2,330.79
7.01	 Total Carried to summary 7. FINISHING WORK Apply three coats of plastering in cement mortar (1:3). Price shall include pre-cleaning and preparation of the surface/ all exposed area/ 	m²	11.28	206.63	2,330.79
7.01	 Total Carried to summary 7. FINISHING WORK Apply three coats of plastering in cement mortar (1:3). Price shall include pre-cleaning and preparation of the surface/ all exposed area/ 50mm thick smooth finished cement 	m ²	9.92	206.63	17,546.10 2,330.79 2,197.78
7.01	 Total Carried to summary 7. FINISHING WORK Apply three coats of plastering in cement mortar (1:3). Price shall include pre-cleaning and preparation of the surface/ all exposed area/ 50mm thick smooth finished cement mortar screed (1:3) water jar seat finish. 	m ²	9.92	206.63	17,546.10 2,330.79 2,197.78
7.01	 Total Carried to summary 7. FINISHING WORK Apply three coats of plastering in cement mortar (1:3). Price shall include precleaning and preparation of the surface/ all exposed area/ 50mm thick smooth finished cement mortar screed (1:3) water jar seat finish. All as per engineers approval. 	m ²	9.92	206.63	17,546.10 2,330.79 2,197.78

7.8 PRESSURE BREAK TANK

Summary Of Bill Of Quantities					
No	Description Unit Oty Rate	Amount			
110.	Description Ont Qty Rate	ЕТВ			
1	Excavation and earth work	1,760.19			
2	Concrete Works	22,998.74			
3	Steel reinforcement	12,276.31			
4	Masonry works	9,769.79			

5	Metal works	3,548.28
6	Inlet/outlet Manhole	13,812.70
7	Pipe & fitting installation	58,355.42
8	Finishing works	10,308.23

TOTAL CARRIED TO COMBINED SUMMARY......132,829.66

No.	Description	Unit	Qty	Rate	Amount ETB
	1. EXCAVATION & EARTH WORK				
1.01	Clear and remove top soil to an average depth of 200mm.	m ²	16.00	37.47	599.52
1.02	Bulk excavation in ordinary soil to a depth not exceeding 1500mm to remove expansive soil material.	m ³	1.60	100.5 1	160.82
1.03	Load & cart away all excavated material to an appropriate tip.	m ³	3.36	73.90	248.30
1.04	200mm thick basaltic stone hardcore well rolled, consolidated and blinded with crushed stone. For valve chamber	m ²	5.29	142.0 7	751.55
	Total Carried to summary	•••••	• • • • • • • • • • •		1,760.19
	2. CONCRETE WORK				
2.01	100mm lean concrete quality C-5, with minimum cement content of 150 kg /m3, of concrete:	m ²	12.00	223.64	2,683.68

2.02	Reinforced concrete quality C-25,360 kg cement/m3 filled in to form work & vibrat around rod reinforcement (Formwork a reinforcement measured separately). Ri beam	of ed nd ng	m ³	4.32	4,702.5	20,315.06
	Total Carried to summary	••••	•••••	•••••		22,998.74
	3. STEEL REINFORCEMENT					
3.01	Mild steel reinforcement according structural drawings. Price includes cuttin bending, placing in position and tying wire.	to ng,				
	10 mm deformed bar		kg	147.94	4 82.98	12,276.31
	Total Carried to summary	••••	•••••			12,276.31
	4. MASONRY WORKS					
4.01	Stone masonry construction in cement mortar (1:3)	m	13	5.52	1,769.89	9,769.79
	5. METAL WORK					
5.01	Metal Doors in 38 X 38 X1.5 mm thick LTZ Steel Profile Covered with 1.0 mm Galvanized Ribbed Steel Sheet Where Shown On Drawings including hardware, approved cylinder lock set , one coat of anti rust Paint and two coat of metal paint.					
	MD= size: 1550X700mm (for Pressure Break Tank man hole cover), including all accessories	рс	cs	1.00	3,548.28	3,548.28
	6. INLET/OUTLET PIPES MANHOLE					

HY-ENGINEERING PLC E-mail: henokhawassa@gmail.com Hawassa, Ethiopia

5.01	Man hole for the inlet and outlet pipes with the internal dimension of 70 X 70 X 100 cm depth. Where Shown On Drawings including a manhole cover metal door hardware, approved cylinder lock set, one coat of anti rust Paint and two coat of metal paint.				
	Man hole for Pressure Break Tank , including man hole cover	pcs	2.00	6,906.35	13,812.70
	6.PIPE & FITTING INSTALLATION				
	Supply & install Pipes for the inlet and distribution pipe connections to the water point fixtures according to the drawing complete with the necessary connecting pieces such as tees, bends, unions, etc. The installation shall be tested at a pressure of 10 kg/cm ² at the expense of the contractor.				
6.01	Plumbing works				
	GS pipe $\emptyset = 2$ "	m	6.00	784.64	4,707.84
6.02	Fitting supply and connection work				
	Floating Gate Valve Φ 6''	pcs	1.00	24,926.87	24,926.87
	Gate Valve Φ 2"	pcs	1.00	1,827.84	1,827.84
	Union Φ 6''	pcs	2.00	3,067.43	6,134.86
	Nipples Φ 6''	pcs	1.00	2,515.43	2,515.43
	Tee Φ 2''	pcs	1.00	140.24	140.24

		• • • • • •			• • • • • • • • • •		
	Elbow Φ 6''	pcs	5 4	4.00	2,681.2	27	10,725.08
	Coupling $\emptyset = 6$ "	pcs	5	1.00	3,564.3	39	3,564.39
	Adaptor Ø=6"	pcs	5	1.00	3,812.8	87	3,812.87
	Total Carried to summary.	•••••	•••••	•••••	•••••	••••	58,355.42
	7. FINISHING WORK						
7.01	Apply three coats of plastering in ceme mortar (1:3). Price shall include pre-cleani and preparation of the surface.	ent ng					
	all exposed area		m²	32.8	5 206.	63	6,787.80
7.02	50mm thick smooth finished cement mor screed(1:3) internal surface finish. All as p engineers approval.	tar ber	m²	15.8	9 221.	55	3,520.43
	Total Carried to summar	y	•••••	•••••	•••••	••••	10,308.23
7.9 S	Total Carried to summar SPRING CAPPING/ COLLECTING CHAM	y IBER	 K	•••••			10,308.23
7.9 S No.	Total Carried to summar SPRING CAPPING/ COLLECTING CHAN Description	y IBER	R Unit	Qty	v Rat	te	10,308.23 Amount
7.9 S No.	Total Carried to summar SPRING CAPPING/ COLLECTING CHAN Description <u>A. SUB_STRUCTURE</u>	y IBER	R Unit	Qty	y Rat	te	10,308.23 Amount
7.9 S No.	Total Carried to summar SPRING CAPPING/ COLLECTING CHAM Description <u>A. SUB_STRUCTURE</u> Excavation and earth work	y IBER	۲ Unit	Qt	v Rat	 te	10,308.23 Amount 12,699.36
7.9 5 No. 1 2	Total Carried to summar SPRING CAPPING/ COLLECTING CHAM Description <u>A. SUB_STRUCTURE</u> Excavation and earth work Concrete works	y	₹ Unit	Qt	v Rat	te	10,308.23 Amount 12,699.36 3,153.01
7.9 5 No. 1 2 3	Total Carried to summar SPRING CAPPING/ COLLECTING CHAN Description <u>A. SUB_STRUCTURE</u> Excavation and earth work Concrete works Steel reinforcement	y	۲ Unit	Qt	v Rat	 te 	10,308.23 Amount 12,699.36 3,153.01 2,731.45
7.9 5 No. 1 2 3	Total Carried to summar SPRING CAPPING/ COLLECTING CHAM Description <u>A. SUB STRUCTURE</u> Excavation and earth work Concrete works Steel reinforcement Total A	y	۲ Unit	Qt	y Rat	te 	10,308.23 Amount 12,699.36 3,153.01 2,731.45 18,583.82
7.9 5 No. 1 2 3	Total Carried to summar SPRING CAPPING/ COLLECTING CHAN Description A. SUB STRUCTURE Excavation and earth work Concrete works Steel reinforcement Total A B. SUPER STRUCTURE	y	₹ Unit	Qty	y Rat		10,308.23 Amount 12,699.36 3,153.01 2,731.45 18,583.82
7.9 8 No. 1 2 3	Total Carried to summar SPRING CAPPING/ COLLECTING CHAN Description A. SUB STRUCTURE Excavation and earth work Concrete works Steel reinforcement Total A B. SUPER STRUCTURE Concrete works		₹ Unit	Qty	7 Rat		10,308.23 Amount 12,699.36 3,153.01 2,731.45 18,583.82 30,193,44 30,193,44
7.9 S No. 1 2 3	Total Carried to summar SPRING CAPPING/ COLLECTING CHAN Description A. SUB STRUCTURE Excavation and earth work Concrete works Steel reinforcement Total A B. SUPER STRUCTURE Concrete works Form work		۲ Unit	Qt	7 Rat		10,308.23 Amount 12,699.36 3,153.01 2,731.45 18,583.82 30,193.44 1,640.15
7.9 S No. 1 2 3 1 2 3	Total Carried to summar SPRING CAPPING/ COLLECTING CHAN Description A. SUB STRUCTURE Excavation and earth work Concrete works Steel reinforcement Total A B. SUPER STRUCTURE Concrete works Form work		C Unit	Qt	7 Rat		10,308.23 Amount 12,699.36 3,153.01 2,731.45 18,583.82 30,193.44 1,640.15 2,731.45
7.9 5 No. 1 2 3 1 2 3 4	Total Carried to summar SPRING CAPPING/ COLLECTING CHAN Description A. SUB STRUCTURE Excavation and earth work Concrete works Steel reinforcement Total A B. SUPER STRUCTURE Concrete works Form work Steel reinforcement Metal works		C Unit	Qt	7 Rat	te 	10,308.23 Amount 12,699.36 3,153.01 2,731.45 18,583.82 30,193.44 1,640.15 2,731.45 2,731.45
7.9 5 No. 1 2 3 1 2 3 4 5	Total Carried to summar SPRING CAPPING/ COLLECTING CHAM Description A. SUB STRUCTURE Excavation and earth work Concrete works Steel reinforcement Total A B. SUPER STRUCTURE Concrete works Form work		₹ Unit	Qt	y Rat	te 	10,308.23 Amount 12,699.36 3,153.01 2,731.45 18,583.82 30,193.44 1,640.15 2,731.45 2,731.45 2,731.45 2,731.45 2,202.25 29,907.05
7.9 5 No. 1 2 3 1 2 3 4 5 6	Total Carried to summar SPRING CAPPING/ COLLECTING CHAN Description A. SUB STRUCTURE Excavation and earth work Concrete works Steel reinforcement Total A B. SUPER STRUCTURE Concrete works Form work Steel reinforcement Total A Metal works Finishing Pipe and fitting installation		۲ Unit	Qt	v Rat	te 	10,308.23 Amount 12,699.36 3,153.01 2,731.45 18,583.82 30,193.44 1,640.15 2,731.45 2,9,907.05 27,301.50

HY-ENGINEERING PLC E-mail: henokhawassa@gmail.com Hawassa, Ethiopia

'Away	vo Keraro Kebele' Water Supply Project Detailed	Desig	n Report		
7	Water quality test Total B	•••••		<u></u>	48,000.00
	TOTAL CARRIED TO COMBINED SUMMA	ARY		•••••	141,973.83 160,559.65
A-SU	B STRUCTURE			_	
No.	Description	Unit	Qty	Rate	Amount
1.01	<u>1. EXCAVATION & EARTH WORK</u> Clear and remove top soil to an average depth of 200mm.	m ²	36.00	37.47	1,348.92
1.02	Bulk excavation in ordinary soil to a depth not exceeding 1500mm to remove expansive soil material.	m ³	8.25	100.51	829.21
1.03	Load & cart away all excavated material to an appropriate trip.	m ³	15.45	73.90	1,141.76
1.04	Back fill with selected material (1000mm impervious clay layer well consolidated) from quarry waste & compact in layers.	m ³	15.13	587.90	8,891.99
1.05	500mm thick graded river filter well rolled,	m ²	2.75	177.27	487.49
	Total Carried to summary	 •••••••		•••••	12,699.36
	2. CONCRETE WORK				
2.01	100 mm lean concrete quality C-5, with				
	concrete:				
	Under collection chamber base slab	m ²	6.25	223.64	1,397.75
2.02	Reinforced concrete quality C-20,360 kg of cement/m3 filled in to form work & vibrated around rod reinforcement (Formwork and reinforcement measured separately)				
	base slab	m ³	0.40	4,388.14	1,755.26
	Total Carried to summary	••••••	•••••	•••••	3,153.01
3.01	<u>3. STEEL REINFORCEMENT</u> Mild steel reinforcement according to structural drawings. Price includes cutting, bending, placing in position and tying wire.				
	bending, placing in position and tying wire.				

Chent	a)10mm deformed bar		kg	32.92	82.98	2.731.45
	Total Carried to summary					2.731.45
B-SU	PER STRUCTURE				l .	Į.
No.	Description	U	nit	Qty	Rate	Amount
	1.2. MASONRY WORKS					
1.01	40cm thick Stone masonry wall in cement					
	mortar (1:3)					
	a) Wing wall	m ³	3	5.65	1,769.89	10,003.42
	b) collection chamber	m ^a	3	11.41	1,769.89	20,190.02
	Total Carried to summary	••••	•••••	•••••	••••	30,193.44
	<u>2. FORM WORK</u>					
2.01	Provide, cut and fix in position sawn structura	ıl				
	wood or steel formwork whichever is					
	appropriate.		2			
	a) for both bottom and roof slab		m ²	6.02	272.54	1,640.15
	Total Carried to summary	••••	•••••	•••••	••••	1,640.15
	3. STEEL REINFORCEMENT					
3.01	Mild steel reinforcement according to					
0101	structural drawings. Price includes cutting.					
	bending, placing in position and tying wire.					
	a) 10 mm deformed bar		kg	32.92	82.98	2.731.45
	Total Carried to summary					2.731.45
						,
	4. METAL WORK					
4.01	Metal Doors in 38 X 38 X1.5 mm thick LT	Ζ				
	Steel Profile Covered with 1.0 mm					
	Galvanized Ribbed Steel Sheet Where Shown	L				
	On Drawings including hardware, approved					
	cylinder lock set, one coat of anti rust Paint					
	and two coat of metal paint.					
	METAL DOORS					

Client	: Czech Development Agency				
	MD= size: 600*600mm (for collection	no	1.00	2 202 25	2 202 25
	chamber top slab man hole cover)		1.00	2,202.23	2,202.23
	Total Carried to summary	•••••	•••••	•••••	2,202.25
	<u>5. FINISHING</u>				
5.01	Apply three coats of plastering in cement				
	mortar (1:3). Price shall include pre-cleaning				
	and preparation of the surface.				
	a) To exposed surface of wing wall	m²	18.35	206.63	3,791.66
	b)To exposed surface for the collection	m2	55 40	206 63	11 447 30
	chamber	111-	55.40	200.03	11,447.30
5.05	50mm thick smooth finished cement mortar				
	screed (1:3) collection chamber internal				
	surface finish with glass stripping for crack	m²	23.50	221.55	5,206.43
	protection c/c 2000mm both ways. Price				
	includes glass. All as per engineers approval.				
5.06	C-20 concrete pavement all around the spring	m ³	1.6	1 288 11	7 021 02
	collecting chamber		1.0	4,300.14	7,021.02
5.07	Diameter 400mm half concrete pipe ditch				
	around pavement on & including. 100mm				
	thick red ash base and jointed in cement	ml	8.0	305.08	2,440.64
	mortar mixes (1:2). Price shall include side				
	support stone on the external side of the ditch.				
	Total Carried to summary	•••••			29,907.05
	CODE & EITTING INGTALLATION				
6.01	U.TIFE & FII HING INSTALLATION				
0.01	distribution nine connections to the record				
	distribution pipe connections to the reservoir				
	includes according to the drawing complete				
	with the necessary connecting pieces such as				
	tees, bends, unions, reducers, adaptors etc. The				
	unit price shall include all necessary assistance				
	to the installation works such as supports for				
	horizontal and vertical pipes and providing				

	Total Carried to summary	•••••	•••••	•••••	48,000.00
6.02	Supply & fix flanged Gate Valves of approved quality complete with unions, hand wheels etc.	LS	1	48,000.00	48,000.00
	7.WATER QUALITY TEST				
	Total Carried to summary	•••••	•••••		27,301.50
	a) Diameter 50 mm	pcs	2	2,138.93	4,277.86
	quality complete with unions, hand wheels etc.				
6.02	Supply & fix flanged Gate Valves of approved				
	b) Diameter 50 mm outlet pipe(GI Pipe)	m	6	1,827.84	10,967.03
	vent & drainage pipe(GI-Class-B)	m	12	1,004.72	12,056.60
	a) Diameter 50 mm for the inlet, over flow,		10	1 004 72	10.056.60
	contractor.				
	at a pressure of 10 kg/cm^2 at the expense of the				
	flanged pipes. The installation shall be tested				
<u>Chent</u> :	flanged pipes. The installation shall be tested			<u></u>	

7.10 MAN HOLE								
	Summary Of Bill Of Quantities							
No.	Description							
					(ETB)			
1	Excavation and earth work	• • • • • • • • • • • •			1,334.53			
2	Masonry Works			• • • • • • • • • • • • • • • • • • • •	2,777.78			
3	Concrete works		•••••		1,405.56			
4	Steel reinforcement	•••••			769.93			
5	Form work		•••••		147.17			
6	Finishing works		•••••		471.38			
	TOTAL CARRIED TO COMBINED SUN	AMARY	7	•••••	6,906.35			
No.	Description	Unit	Qty	Rate	Amount			
					(ETB)			
	1. EXCAVATION & EARTH WORK							
1.01	Clear and remove top soil to an average	m ²	3.78	37.47	141.64			
	depth of 200mm.							

$\frac{\text{Chent}}{1.02}$	Bulk excavation in ordinary soil to a depth	m ³	2 92	100 51	293.09		
1.02	not exceeding 1500mm to remove	111	2.72	100.51	275.07		
	avpansive soil meterial						
1.02		3	2.02	72.00	215.40		
1.03	Load & cart away all excavated material to	m	2.92	73.90	215.49		
	an appropriate tip.	2					
1.04	Back fill with selected material (300mm	m°	0.73	587.91	428.59		
	impervious clay layer well consolidated)						
	from quarry waste & compact in layers.						
1.05	150mm thick basaltic stone hardcore well	m^2	1.80	142.07	255.73		
	rolled, consolidated and blinded with						
	crushed stone.						
	Total Carried to summary	•••••	•••••		1,334.53		
	2. MASONRY WORKS						
2.01	25cm thick Stone masonry foundation wall	m ³	1.83	1,522.07	2,777.78		
	in cement mortar (1:3)						
	3. CONCRETE WORK			I	I		
3.01	80 mm lean concrete quality C-5, with	th m ²	2.50	223.64	559.10		
	minimum cement content of 150 kg /m3, o	of					
	concrete:						
3.02	Reinforced concrete quality C-25,360 kg of	of					
	cement/m3 filled in to form work & vibrate	d					
	around rod reinforcement (Formwork an	d					
	reinforcement measured separately). Priz	æ					
	include transportation, erection, handle ba	r,					
	etc.						
	top slab	m ³	0.18	4,702.56	846.46		
	Total Carried to summary	•••••		•••••	1,405.56		
	4. STEEL REINFORCEMENT				I		
4.01	Mild steel reinforcement according to						
	structural drawings. Price includes cutting,						
	bending, placing in position and tying wire.						
	Dia. 8 mm deformed bar	kg	9.28	82.98	769.93		
1	5. FORM WORK	<u> </u>	I	<u> </u>	1		

Client: Czech Development Agency.

5.01	Provide, cut and fix in position sawn structural wood or steel formwork whichever is appropriate.				
	for column 200x200mm	m^2	0.54	272.54	147.17
	6. FINISHING				
6.01	Apply two coats of plastering to internal &	m²	2.50	188.93	471.38
	external wall surface above NGL in cement				
	mortar (1:3). Price shall include pre-				
	cleaning and preparation of the surface.				

7.11 A	NCHOR BLOCK	
	Summary Of Bill Of Quantities	
No.	Description	Amount
		(ETB)
1	Excavation and earth work	169.50
2	Masonry Works	441.40
3	Concrete works	89.46
4	Finishing works	330.63
	TOTAL CARRIED TO COMBINED SUMMARY	1,030.98

No.	Description	Unit	Qty	Rate	Amount
				(ETB)	(ETB)
	1. EXCAVATION & EARTH WORK				
1.01	Clear and remove top soil to an average depth of	m ²	1.12	37.47	41.97
	200mm.				
1.02	Bulk excavation in ordinary soil to a depth not	m ³	0.22	100.51	22.11
	exceeding 1500mm to remove expansive soil				
	material.				
1.03	Load & cart away all excavated material to an	m ³	0.22	73.90	16.26
	appropriate tip.				
1.04	Back fill with selected material (300mm impervious	m ³	0.06	587.91	32.34
	clay layer well consolidated) from quarry waste &				

Chem	. Czech Development Ageney	• • • • • • • •	• • • • • • • • •	• •	
	compact in layers.				
1.05	150mm thick basaltic stone hardcore well rolled,	m ²	0.40	142.07	56.83
	consolidated and blinded with crushed stone.				
	Total Carried to summary	•••••	•••••	•••••	169.50
	2. MASONRY WORKS				
2.01	25cm thick Stone masonry in cement mortar (1:3)	m ³	0.29	1,522.07	441.40
	3. CONCRETE WORK				
3.01	80 mm lean concrete quality C-5, with minimum	m^2	0.40	223.64	89.46
	cement content of 150 kg /m3, of concrete:				
	4. FINISHING	1	1	4	I
4.01	Apply two coats of plastering to exposed wall	m²	1.75	188.93	330.63
	surface above NGL in cement mortar (1:3). Price				
	shall include pre-cleaning and preparation of the				
	surface.				
		1	1	1	1

7.12 H	FENCING FOR STATION-1	
	Summary Of Bill Of Quantities	
No.	Description	Amount
		(ETB)
A-SU	B STRUCTURE	
1	Excavation and earth work	9,607.08
2	Concrete works	15,284.62
3	Form work	3,548.14
4	Steel reinforcement	5,989.50
	Total A	28,439.84
B. SU	JPER STRUCTURE	
1	Concrete works	15,833.24
2	Form works	20,672.70
3	Steel reinforcement	38,199.27
4	Metal works	19,513.08
	Total B	94,218.30

Client: Czech Development Agency...... TOTAL CARRIED TO COMBINE SUMMARY A + B.....

122,658.14

A-SU	B STRUCTURE					
No.	Description	Unit		Qty	Rate	Amount
						(ETB)
	1. EXCAVATION & EARTH WORK					
1.01	Bulk excavation in ordinary soil to a de	pth m	1 ³	12.74	100.51	1,280.24
	not exceeding 1500mm to remo	ove				
	expansive soil material.					
1.02	Load & cart away all excavated material	l to m	1 ³	6.37	73.91	470.71
	an appropriate tip.					
1.03	Back fill with selected material (300r	nm m	1 ³	10.19	587.91	5,990.76
	impervious clay layer well consolidat	ed)				
	from quarry waste & compact in layers.					
1.04	100mm thick basaltic stone hardcore w	vell m	n^2	9.75	142.07	1,385.18
	rolled, consolidated and blinded w	vith				
	crushed stone.					
1.05	150mm thick basaltic stone hardcore w	vell m	n^2	3.38	142.07	480.20
	rolled, consolidated and blinded w	vith				
	crushed stone.					
	Total Carried to summary	••••	••••	•••••	••••	9,607.08
	2. CONCRETE WORK					
2.01	80 mm lean concrete quality C-5, w	ith m	n^2	13.13	223.64	2,936.39
	minimum cement content of 150 kg /m3,	, of				
	concrete: fencing post					
2.02	Reinforced concrete quality C-20, 360	kg of c	cem	ent/m3	filled in to	form work &
	vibrated around rod reinforcement	(Formy	wor	k and	reinforceme	nt measured
	separately)					
	post & column -footing	m	1 ³	2.81	4,388.14	12,348.23
	Total Carried to summary	••••	••••	••••	•••••	15,284.62
	3. FORM WORK					
3.01	Provide, cut and fix in position sa	wn m	n^2	13.02	272.54	3,548.14
	structural wood or steel formwo	ork				

Chem	· Cheen Development Ageney	• • • • • • • •	•••••		
	whichever is appropriate for post and				
	column				
	4. STEEL REINFORCEMENT				
4.01	Mild steel reinforcement according to				
	structural drawings. Price includes cutting,				
	bending, placing in position and tying wire.				
	a) Dia. 6 mm deformed bar	kg	49.78	82.98	4,131.03
	b) Dia. 8 mm deformed bar	kg	22.40	82.98	1,858.46
	Total Carried to summary	•••••	• • • • • • • • • • •	••••	5,989.50
B-SU	PER STRUCTURE				
No.	Description	Unit	Qty	Rate	Amount
					(ETB)
	1. CONCRETE WORK				•
1.01	Reinforced concrete quality C-20, 360 kg of	m ³	3.61	4,388.14	15,833.24
	cement/m3 filled in to form work &				
	vibrated around rod reinforcement				
	(Formwork and reinforcement measured				
	separately)				
	2. FORM WORK		1		
2.01	Provide, cut and fix in position sawn	m ²	75.85	272.54	20,672.70
	structural wood or steel formwork				
	whichever is appropriate for post and				
	column				
	3. STEEL REINFORCEMENT	•			
3.01	Mild steel reinforcement according to				
	structural drawings. Price includes cutting,				
	bending, placing in position and tying wire.				
	a) Dia. 6 mm deformed bar	kg	140.15	82.98	11,629.76
	b) Dia. 8 mm deformed bar	kg	268.24	82.98	22,258.86
	c) Dia. 12 mm deformed bar	kg	51.95	82.98	4,310.65
	Total Carried	•		to	38,199.27

Client	: Czech Development Agency				RESOURCE DEVELOPMENT. HAVINGS
	summary		•••		
	4. METAL WORK				
4.01	Metal Doors in 60 X 60 X3 mm thick				
	LTZ Steel Profile Covered with 1.0mm				
	Galvanized Ribbed Steel Sheet and mesh				
	wire Where Shown On Drawings including				
	hardware, approved cylinder lock set, one				
	coat of anti rust Paint and two coat of metal				
	paint.				
	MD= size: 3.2x2.8m	pcs	1.00	8,828.28	8,828.28
4.02	Supply, fabricate and mount 1.5mmthick	ml	840.00	12.72	10,684.80
	barbed wire according to the structural				
	drawing .Price shall include, all other				
	necessary accessories to complete the work.				
	Total Carried to summary		•••••	•••••	19,513.08

7.13	FENCING FOR STATION-2	
	Summary Of Bill Of Quantities	
No.	Description	Amount
		(ETB)
A-SU	JB STRUCTURE	
1	Excavation and earth work	5,825.81
2	Concrete works	10,604.23
3	Form work	2,158.19
4	Steel reinforcement	4,188.79
I	Total A	22,777.02
B. SU	JPER STRUCTURE	
1	Concrete works	8,780.54
2	Form works	12,692.73
3	Steel reinforcement	22,461.73
4	Metal works	14,933.88
I	Total B	58,868.88

Clien	t: Czech Development Agency TOTAL CARRIED TO COMBINE SUMM	ARY A	A + B	••••••	81,645.90
A-SU	JB STRUCTURE				
No.	Description	Unit	Qty	Rate	Amount
					(ETB)
-	1. EXCAVATION & EARTH WORK	•	•		
1.01	Bulk excavation in ordinary soil to a depth	m ³	9.00	100.51	904.33
	not exceeding 1500mm to remove expansive				
	soil material.				
1.02	Load & cart away all excavated material to	m ³	4.50	73.91	332.50
	an appropriate tip.				
1.03	Back fill with selected material (300mm	m ³	7.20	587.91	4,231.73
	impervious clay layer well consolidated)				
	from quarry waste & compact in layers.				
1.04	100mm thick basaltic stone hardcore well	m ²	5.50	142.07	781.39
	rolled, consolidated and blinded with crushed				
	stone.				
1.05	150mm thick basaltic stone hardcore well	m ²	3.38	142.07	480.20
	rolled, consolidated and blinded with crushed				
	stone.				
	Total Carried to summary	•••••	• • • • • • • • • •	•••••	5,825.81
	2. CONCRETE WORK				
2.01	80 mm lean concrete quality C-5, with				
	minimum cement content of 150 kg /m3, of				
	concrete:				
	fencing post	m^2	8.88	223.64	1,985.92
2.02	Reinforced concrete quality C-20, 360 kg of				
	cement/m3 filled in to form work & vibrated				
	around rod reinforcement (Formwork and				
	reinforcement measured separately)				
	post & column -footing	m ³	1.96	4,388.14	8,618.31
	Total Carried to summary	••••	••••	••••••	10,604.23
	3. FORM WORK				

3.01	Provide, cut and fix in position sawn	m ²	7.92	272.54	2,158.19
	structural wood or steel formwork whichever				
	is appropriate for post and column				
	4. STEEL REINFORCEMENT				
4.01	Mild steel reinforcement according to				
	structural drawings. Price includes cutting,				
	bending, placing in position and tying wire.				
	a) Dia. 6 mm deformed bar	kg	28.08	82.98	2,330.33
	b) Dia. 8 mm deformed bar	kg	22.40	82.98	1,858.46
	Total Carried to summary	•••••	•••••	• • • • • • • • • • • • • • • •	4,188.79
B-SU	PER STRUCTURE				
No.	Description	Unit	Qty	Rate	Amount
				(ETB)	(ETB)
	1. CONCRETE WORK				
1.01	Reinforced concrete quality C-20, 360 kg of	m ³	2.00	4,388.14	8,780.54
	cement/m3 filled in to form work & vibrated				
	around rod reinforcement (Formwork and				
	reinforcement measured separately)				
	2. FORM WORK				_
2.01	Provide, cut and fix in position sawn	m ²	46.57	272.54	12,692.73
	structural wood or steel formwork whichever				
	structural wood or steel formwork whichever is appropriate for post and column				
	structural wood or steel formwork whichever is appropriate for post and column 3. STEEL REINFORCEMENT				
3.01	structural wood or steel formwork whicheveris appropriate for post and column3. STEEL REINFORCEMENTMild steel reinforcement according to				
3.01	structural wood or steel formwork whicheveris appropriate for post and column 3. STEEL REINFORCEMENT Mild steel reinforcement according tostructural drawings. Price includes cutting,				
3.01	structural wood or steel formwork whicheveris appropriate for post and column 3. STEEL REINFORCEMENT Mild steel reinforcement according tostructural drawings. Price includes cutting,bending, placing in position and tying wire.				
3.01	 structural wood or steel formwork whichever is appropriate for post and column 3. STEEL REINFORCEMENT Mild steel reinforcement according to structural drawings. Price includes cutting, bending, placing in position and tying wire. a) Dia. 6 mm deformed bar 	kg	62.64	82.98	5,197.64
3.01	 structural wood or steel formwork whichever is appropriate for post and column 3. STEEL REINFORCEMENT Mild steel reinforcement according to structural drawings. Price includes cutting, bending, placing in position and tying wire. a) Dia. 6 mm deformed bar b) Dia. 8 mm deformed bar 	kg kg	62.64 156.10	82.98 82.98	5,197.64 12,953.44
3.01	 structural wood or steel formwork whichever is appropriate for post and column 3. STEEL REINFORCEMENT Mild steel reinforcement according to structural drawings. Price includes cutting, bending, placing in position and tying wire. a) Dia. 6 mm deformed bar b) Dia. 8 mm deformed bar c) Dia. 12 mm deformed bar 	kg kg kg	62.64 156.10 51.95	82.98 82.98 82.98 82.98	5,197.64 12,953.44 4,310.65
3.01	structural wood or steel formwork whichever is appropriate for post and column 3. STEEL REINFORCEMENT Mild steel reinforcement according to structural drawings. Price includes cutting, bending, placing in position and tying wire. a) Dia. 6 mm deformed bar b) Dia. 8 mm deformed bar c) Dia. 12 mm deformed bar Total Carried to summary	kg kg kg	62.64 156.10 51.95	82.98 82.98 82.98 82.98	5,197.64 12,953.44 4,310.65 22,461.73
3.01	structural wood or steel formwork whichever is appropriate for post and column 3. STEEL REINFORCEMENT Mild steel reinforcement according to structural drawings. Price includes cutting, bending, placing in position and tying wire. a) Dia. 6 mm deformed bar b) Dia. 8 mm deformed bar c) Dia. 12 mm deformed bar Total Carried to summary 4. METAL WORK	kg kg kg	62.64 156.10 51.95	82.98 82.98 82.98	5,197.64 12,953.44 4,310.65 22,461.73
3.01	 structural wood or steel formwork whichever is appropriate for post and column 3. STEEL REINFORCEMENT Mild steel reinforcement according to structural drawings. Price includes cutting, bending, placing in position and tying wire. a) Dia. 6 mm deformed bar b) Dia. 8 mm deformed bar c) Dia. 12 mm deformed bar Total Carried to summary	kg kg kg TZ Ste	62.64 156.10 51.95 eel Profile	82.98 82.98 82.98 82.98	5,197.64 12,953.44 4,310.65 22,461.73 with 1.0mm

	hardware, approved cylinder lock set, one coat of anti rust Paint and two co				
	paint.				
	MD= size: 3.2x2.8m	pcs	1.00	8,828.28	8,828.28
4.02	Supply, fabricate and mount 1.5mmthick	ml	480.00	12.72	6,105.60
	barbed wire according to the structural				
	drawing .Price shall include, all other				
	necessary accessories to complete the work.				
	Total Carried to summary	•••••	•••••		14,933.88

7.14	FENCING FOR PUPLIC WATER POINT							
	Summary Of Bill Of Quantities							
No.	Description				Amount			
					(ETB)			
A-SU								
1	Excavation and earth work				2,843.47			
2	Concrete works			•••••	5,231.02			
3	Form work				2,174.87			
4	Steel reinforcement		•••••		2,712.57			
	Total A	•••••	•••••	•••••	10,249.36			
B. SU	JPER STRUCTURE							
1	Concrete works			•••••	6,471.96			
2	Form works		•••••		9,631.56			
3	Steel reinforcement							
4	Metal works	•••••			12,099.48			
	Total B							
	TOTAL CARRIED TO COMBINE SUM	MARY	A + B		53,341.41			
A-SU	A-SUB STRUCTURE							
No.	Description	Unit	Qty	Rate	Amount			
					(ETB)			
	1. EXCAVATION & EARTH WORK							

Chen	It. Czech Development Agency	2	4.00		100.00
1.0	Bulk excavation in ordinary soil to a depth	m	4.28	100.51	429.68
1	not exceeding 1500mm to remove				
	expansive soil material.				
1.0	Load & cart away all excavated material to	m ³	2.14	73.91	157.98
2	an appropriate tip.				
1.0	Back fill with selected material (300mm	m ³	3.42	587.91	2,010.65
3	impervious clay layer well consolidated)				
	from quarry waste & compact in layers.				
1.0	100mm thick basaltic stone hardcore well	m ²	4.75	142.07	674.83
4	rolled, consolidated and blinded with				
	crushed stone.				
	Total Carried to summary	•••••	•••••	•••••	2,843.47
	2. CONCRETE WORK				
2.0	80 mm lean concrete quality C-5, with				
1	minimum cement content of 150 kg /m3, of				
	concrete:				
	fencing post	m ²	4.75	223.64	1,062.29
2.0	Reinforced concrete quality C-20, 360 kg				
2	of cement/m3 filled in to form work &				
	vibrated around rod reinforcement				
	(Formwork and reinforcement measured				
	separately)				
	post & column -footing	m ³	0.95	4,388.14	4,168.73
	Total Carried to summary	••••••		•••••	5,231.02
	3. FORM WORK				
3.0	Provide, cut and fix in position sawn	m ²	7.98	272.54	2,174.87
1	structural wood or steel formwork				,
	whichever is appropriate for post and				
	column				
	4. STEEL REINFORCEMENT				
4.0	Mild steel reinforcement according to				
1	structural drawings Price includes cutting				
1	bending placing in position and twing wire				
	bending, placing in position and tying wife.				

Clien	t: Czech Development Agency				REACONCE DEVELOPMENT, HAWKOOK			
	a) Dia. 6 mm deformed bar	kg	32.69	82.98	2,712.57			
	Total Carried to summary	•••••	• • • • • • • • • • • •	•••••	2,712.57			
B-SU	B-SUPER STRUCTURE							
No.	Description	Unit	Qty	Rate	Amount			
					(ETB)			
	1. CONCRETE WORK		1		I			
1.0	Reinforced concrete quality C-20, 360 kg of	m ³	1.47	4,388.14	6,471.96			
1	cement/m3 filled in to form work &							
	vibrated around rod reinforcement							
	(Formwork and reinforcement measured							
	separately)							
	2. FORM WORK	1			I			
2.0	Provide, cut and fix in position sawn	m ²	35.34	272.54	9,631.56			
1	structural wood or steel formwork							
	whichever is appropriate for post and							
	column							
	3. STEEL REINFORCEMENT		I					
3.0	Mild steel reinforcement according to							
1	structural drawings. Price includes cutting,							
	bending, placing in position and tying wire.							
	a) Dia. 6 mm deformed bar	kg	54.10	82.98	4,488.87			
	b) Dia. 8 mm deformed bar	kg	125.3	82.98	10,400.17			
			3					
	Total Carried			to	14,889.05			
	summary	•••••	•••••					
	4. METAL WORK							
4.0	Metal Doors in 60 X 60 X3 mm thick	LTZ S	Steel Prof	ile Covered	with 1.0mm			
1	Galvanized Ribbed Steel Sheet and mesh wi	re Wh	ere Show	n On Drawi	ngs including			
	hardware, approved cylinder lock set, one co	at of a	nti rust F	aint and two	coat of metal			
	paint.							
	MD= size: 1.35x2.8m	pcs	1.00	7,520.28	7,520.28			

 Client: Czech Development Agency......

 4.0
 Supply, fabricate and mount 1.5mmthick
 ml
 360.00
 12.72
 4,579.20

 2
 barbed wire according to the structural drawing .Price shall include, all other necessary accessories to complete the work.
 Image: Client Colspan="5">Image: Client Colspan="5"

 <td col

	7.15 FENCING FOR SCHOOL WATER POINT/ SPRING CAPPING					
	Summary Of Bill Of Quantities					
No.	Description	Un	it Q	ty Rate	Amount	
					(ETB)	
	A-SUB STRUCTURE					
1	Excavation and earth work	•••••	••••••	••••••	2,244.84	
2	Concrete works	•••••	•••••	•••••	4,129.76	
3	Form work	• • • • • • •	••••••	••••	1,717.00	
4	Steel reinforcement					
Total A				8,091.60		
	B. SUPER STRUCTURE					
1	Concrete works					
2	Form works					
3	Steel reinforcement	•••••	•••••	•••••	11,754.5	
4	Metal works 1					
	Total B					
	TOTAL CARRIED TO COMBINE SUMMARY A + B 43,641					
A-SU	JB STRUCTURE					
No.	Description	U	Qty	Rate	Amount	
		ni			(ETB)	
		t				
	1. EXCAVATION & EARTH WORK					

Chen	t. Czeen Development Ageney	• • • • • •	• • • • • • • • • •	• • • • • •	
1.0	Bulk excavation in ordinary soil to a depth	m ³	3.38	100.51	339.22
1	not exceeding 1500mm to remove expansive				
	soil material.				
1.0	Load & cart away all excavated material to an	m ³	1.69	73.91	124.72
2	appropriate tip.				
1.0	Back fill with selected material (300mm	m ³	2.70	587.91	1,587.36
3	impervious clay layer well consolidated) from				
	quarry waste & compact in layers.				
1.0	100mm thick basaltic stone hardcore well	m ²	3.75	142.07	532.76
4	rolled, consolidated and blinded with crushed				
	stone.				
	Total Carried to summary		•••••		2,244.84
	2. CONCRETE WORK				
2.0	80 mm lean concrete quality C-5, with				
1	minimum cement content of 150 kg /m3, of				
	concrete:				
	fencing post	m ²	3.75	223.64	838.65
2.0	Reinforced concrete quality C-20, 360 kg of				
2	cement/m3 filled in to form work & vibrated				
	around rod reinforcement (Formwork and				
	reinforcement measured separately)				
	post & column -footing	m ³	0.75	4,388.14	3,291.11
	Total Carried to summary	• • • • • • •	••••	••••	4,129.76
	3. FORM WORK				
3.0	Provide, cut and fix in position sawn	m ²	6.30	272.54	1,717.00
1	structural wood or steel formwork whichever				
	is appropriate for post and column				

Chen	t. Czeen Development Ageney			• • • • •	
	3. STEEL REINFORCEMENT				
3.0	Mild steel reinforcement according to				
1	structural drawings. Price includes cutting,				
	bending, placing in position and tying wire.				
	a) 6 mm deformed bar	kg	25.81	82.98	2,141.51
	Total Carried to summary	• • • • • • •	••••	••••••	2,141.51
B-SU	JPER STRUCTURE				
	1. CONCRETE WORK				
1.0	Reinforced concrete quality C-20, 360 kg of	m ³	1.16	4,388.14	5,109.44
1	cement/m3 filled in to form work &				
	vibrated around rod reinforcement				
	(Formwork and reinforcement measured				
	separately)				
	2. FORM WORK				
2.0	Provide, cut and fix in position sawn	m ²	27.90	272.54	7,603.87
1	structural wood or steel formwork whichever				
	is appropriate for post and column				
	3. STEEL REINFORCEMENT				
3.0	Mild steel reinforcement according to				
1	structural drawings. Price includes cutting,				
	bending, placing in position and tying wire.				
	a) 6 mm deformed bar	kg	42.71	82.98	3,543.85
	b) 8 mm deformed bar	kg	98.95	82.98	8,210.66
	Total Carried to summary.	• • • • • • •	••••••	· · · · · · · · · · · · · · · · · · ·	11,754.5
	4. METAL WORK				

4.0	Metal Doors in 60 X 60 X3 mm thick LTZ					
1	Steel Profile Covered with 1.0mm					
	Galvanized Ribbed Steel Sheet and mesh					
	wire Where Shown On Drawings including					
	hardware, approved cylinder lock set , one					
	coat of anti rust Paint and two coat of metal					
	paint.					
	METAL DOORS					
	MD= size: 1.35x2.8m	pcs	1.00	7,520.28	7,520.28	
4.0	Supply, fabricate and mount 1.5mmthick	ml	280.0	12.72	3,561.60	
2	barbed wire according to the structural					
	drawing .Price shall include, all other					
	necessary accessories to complete the work.					
	Total Carried to summary					

CHAPTER 8

CONSTRUCTION DRAWINGS

Item	Drawing	Drawing
Number	Number	Title
8.1	HY-DWG-001	PIPE LINE DISTRIBUTION NETWORK
8.2	HY-DWG-002	STATION SITE PLAN
8.3	HY-DWG-003	FENCING FOR STATION
8.4	HY-DWG-004	BREAK PRESSURE TANK
8.5	HY-DWG-005	MANHOLE AND ANCHOR BLOCK
8.6	HY-DWG-006	SPRING CAPPING
8.7	HY-DWG-007	WATER POINTS
8.8	HY-DWG-008	50M ³ WET-WELL
8.9	HY-DWG-009	100M ³ RESERVOIR
8.10	HY-DWG-010	VALVE CHAMBER 50M ³ WET-WELL
8.11	HY-DWG-011	VALVE CHAMBER 100M ³ RESERVOIR
8.12	HY-DWG-011	FENCING FOR WATER POINTS& SPRING CAPPINGS

8.1 **HY-DWG-001** PIPE LINE DISTRIBUTION NETWORK SIATION STATION TATION SITERUN SOND WET WELL SITERUN FENCING INTEL & OUTLET CHAMBER 100M3 RESERVIOR/WATER TANKER COMPONENTS NLET & OUTLET CHAMBES AMING NUMBER HY-DWG-002 HY-DWG-008 HY-DWG-010 HA-DM2-UII HN-DMG-009 HY-DWG-002 HN-DWG-009 HV-D/WG-008 FENCINO NOHOO. PUBLIC US42 WP-1 DASE WP-1 DASE 651, taxte Mar 2, 2, 2, 4M WALSH NOW ap. NON HY-DWG-60 MANHHOLE DRAWING NUMBER VI+1 ANDHOR IETAILS OF ANCHOR BLOCK N+3 AH4 MH-6 MH-7 MH-2 MH-8 MH-5 MH-4 MH-1 DETAILS OF MANHOLE **DRAWING NUMBE** HN-DW5-005 HY-DWG-005 ł ی 🖻 🖻 🖉 ŝ the second s THE REAL POINT NO. WARE REAL PROFESSION AND STATE PARTY DHOME & BY DINHIT & HINK DWIND ENGINEERING PLC. HI DOUDING NO. MANUS A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER 1 \$

Client: Czech Development Agency.....

8.2 HY-DWG-002 STATION SITE PLAN

8.3 HY-DWG-003 FENCING FOR STATION

H VENGINEERING PLC

6

6

8.6 HY-DWG-006 SPRING CAPPING

6

6

8.8

EAL OF SECTION E-

6

8.10

5

SECTION OF SH

8.12 HY-DWG-012 FENCING FOR WATER POINTS & SPRING CAPPINGS

CHAPTER 9

ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT

9.1 General

Environmental impact assessment is a process to improve decision making and to ensure that the project option under consideration are environmentally sound and sustainable.EIA as a system consists the hydrological, biologically, atmospherically, cultural and social conditions. The environmental impact assessment is concerned with identifying, predicting and evaluating the foreseeable environmental effects, alternative and mitigation measures, aiming at eliminating or minimizing the adverse effects and optimizing and maximizing the benefits that is obtained as the results of the project.

There is no as such considerable environmental and social negative impact in this rural water supply and sanitation project. Even the expected impacts are reversible. The project is classified under environmental and social category C (as shown in Annexure VII: Environmental and social screening).

Generally, the major positive impacts of the project are save time and energy in fetching of drinking water and reduces the burden of women and child in fetching of water from remote rivers and unprotected water sources, improve the water supply and sanitation coverage in the project area, improve health, living standard and productivity of the community, Provide better quality and sustainable water supply to the area, and create job opportunities.

9.2 Negative impact and its mitigation measures

- ✓ Due to excavation of the trenches for the pipe laying, reservoir, spring capping for which the natural ground is disturbed, damaged and loss of the original strength of the ground. Themitigation measure could be covering the trench back with soil and compact properly up to the required level of the ground.
- ✓ During the time of construction components of planted trees and vegetables, may get deforested along the pipe line and excavation on stations. The mitigation measure could be to pay compensation and plantation of seedling
- ✓ The springs are used by the people for drinking and irrigation purpose, currently. The construction of this project will affect these people negatively. Providing water

points near the springs and provide over flow at the spring capping will mitigate these impacts exposed on these people.

9.3 Positive impacts of the projects

This project is expected to generally improve the lifestyle and social status of the beneficiaries. Potential positive impacts of the project can be classified under two categories.

A. Socio-economic impacts

The socio-economic impacts of this project include:

- ✓ Improving environmental quality in the rural community and downstream areas.
- \checkmark Developing institutional capacity and creating new employment opportunities.
 - **B.** Health related impacts

The health related impacts of this project are:

- ✓ Raising living standards and safeguarding public health.
- ✓ Supplying the population with safe and adequate drinking water will reduce water related diseases.
- ✓ Improve standards of living of rural community.
- \checkmark Increased public satisfaction with the rural environment.
- ✓ Improved sanitation and hygiene for residents near river watercourses

Generally, this water supply system provides great advantages to 'Awayo Keraro Kebele' Community for the reasons of adequate supply of clean water that is suitable to healthy and improves standards of living of the community.

Annexure

- Annexure I: Cost Breakdown
- Annexure II: Structural design document
- Annexure III: Hydraulic analysis/ Water CAD report
- Annexure IV: Baseline survey questionnaire
- Annexure V: Summary of water Demand
- Annexure VI: Environmental and social screening
- Annexure VII: Specific Location of System Components

ANNEXURE-I COST BREAKDOWN

ITEM NO.	CONTENT
1	MATERIAL PRICE
2	BENEFIT FACTOR
3	MAN POWER COST
4	EQUIPMENT RENTAL COST
5	OVERHEAD & PROFIT
6	UNIT COST BREAKDOWN
	➢ GI- PIPES & FITTINGS
	➢ HDPE- PIPES & FITTINGS
	CIVIL STRUCTURE

Client: Czech Development Agency.....

i. MATERIAL PRICE

Ite	Type of material	Unit	Selling	Selling price				
m			price	with 15%				
No			(ETB)	VAT (ETB)	Source			
CONCRETE MAKING RAW MATERIALS								
1	Cement	Quintal	495.00	569.25	Building material shop			
2	Sand	m ³	530.00	609.50	'Hantate' area sand quarry			
					site			
3	Aggregate	m ³	800.00	920.00	'Bensa' area quarry site			
4	Stone	m ³	170.00	195.50	' Bensa' area quarry site			
5	Crushed stone	m ³	285.00	327.75	"			
6	Selected material	m ³	300.00	345.00	"			
7	Aggregate 01	m ³	800.00	920.00	'Bensa' area quarry site			
8	Aggregate 02	m ³	900.00	1035.00	'Bensa' area quarry site			
9	Water	m ³	20.00	23.00	'Bensa' Town			
10	Red ash	m3	35.00	40.25	'Bensa' area quarry site			
11	Pre-cast concrete	ml	91.84	105.62				
	pipe							
	dia. 400mm							
	1	<u>. </u>		1	1			

REINFORCEMENT BAR

1	Dai 6	kg	60.00	69.00	Building material
					suppliers
					(@Bensa Town)
2	Dai 8	kg	60.00	69.00	"
3	Dai 10	kg	60.00	69.00	"
4	Dai 12	kg	60.00	69.00	"
5	Dai 14	kg	60.00	69.00	"
6	Dai 16	kg	60.00	69.00	"
7	Dai 18	kg	60.00	69.00	"
8	Dai 20	kg	60.00	69.00	"

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report

Client: Czech Development Agency.....

9	Dai 22	kg	60.00	69.00	"
10	Dai 24	kg	60.00	69.00	"
11	Dai 30	kg	60.00	69.00	"
12	Dai 32	kg	60.00	69.00	"
13	Tie wire 1.5mm	kg	80.00	92.00	"

METAL WORK

1	RHS, SHS & CHS				Metal work shop
	Steel				(@Bensa Town)
	a) 3mm thick	m	600.00	690.00	"
	b) 1.5mm thick	m	350.00	402.50	"
2	Door				"
	size 2.1x0.9 m	LS	2,500.00	2875.00	"
	size 2.1x2 m	LS	4,500.00	5175.00	"
3	Window				"
	size 1.2x1.2 m	LS	1,200.00	1380.00	"
	size 1.2x0.9 m	LS	1,000.00	1150.00	"
4	LP Type Window				"
	size 1.2x1.2 m	LS	700.00	805.00	"
	size 0.4x0.8 m	LS	400.00	460.00	"
5	3m high ladder (RT	LS	1,500.00	1725.00	
	64-3mm thick)				"
6	Steel plate				"
	a) 3mm thick	m ²	2,300.00	2645.00	"
	b) 1.5mm thick	m ²	1,550.00	1782.50	"
7	Nails				Material Supplier
					(@Bensa Town)
	a) 3cm & 4cm.	Kg	90.00	103.50	"
	b) 5cm up to 15cm.	Kg	100.00	115.00	"
	c) Doomed nail	Kg	100.00	115.00	"
8	cylinder lock set	PCS	450.00	517.50	"

Client	: Czech Development	<u>Agency</u>			• • • • • •
9	Barbed Wire (80kg	Roll	1,500.00	1725.00	
	or 50m.).				"
10	15cm. Thick	PCS	15	17.25	Precast work shop
	H.C.B. wall				(@BensaTown)
11	20cm. Thick	PCS	20.00	23.00	
	H.C.B. wall				"
12	G-28galvanized	m ²	80.00	92.00	Material Supplier
	iron sheet				(@Bensa Town)
13	Ridge	m	50.00	57.50	"
14	φ10mm thick bolt	PCS	35.00	40.25	
	& nut				"
WOO	D WORK				
1	Timber for form	m ²	60.00	69.00	Wood work shop
	work				(@Bensa Town
	Dia.=10mm	m	20.00	23.00	"
	Dia.=8mm	m	12.50	14.38	"
2	Eucalyptus Truss				
	wood				"
	Dia. 10 -12 cm	m	25.00	28.75	"
	Dia. 6 -8 cm	m	15.00	17.25	"
3	5cm*7cm Purling	m	50.00	57.50	"
4	Iron Band	Kg	60.00	69.00	"
PAIN	TING				
1	Anti rust	gal	600	690.00	Building material
					suppliers
					(@Bensa Town)
2	Metal paint	gal	800	920.00	"
PIPE	S(GI)				

1Galvanized pipe 6"m2500.002875.00Building material

					suppliers
					(@Bensa Town)
2	Galvanized pipe 4"	m	900.00	1035.00	"
3	Galvanized pipe 3"	m	663.33	762.83	"
4	Galvanized pipe 2.5"	m	550.00	632.50	11
5	Galvanized pipe 2"	m	466.67	536.67	"
6	Galvanized pipe 1.5"	m	396.67	456.17	"
7	Galvanized pipe 1"	m	263.33	302.83	11
8	Galvanized pipe 3/4"	m	155.00	178.25	"

GI-FITTINGS

	Union				"
1	ф=6"	pcs	2,100.00	2415.00	"
2	ф=4"	pcs	650.00	747.50	"
3	ф=3"	pcs	390.00	448.50	"
4	φ =2 1/2"	pcs	280.00	322.00	"
5	φ =2"	pcs	160.00	184.00	"
6	φ=1 1/2"	pcs	110.00	126.50	"
7	φ=1"	pcs	60.00	69.00	"
8	φ=3/4"	pcs	35.00	40.25	"
9	φ=1/2"	pcs	25.00	28.75	"
	Nipples				"
1	ф=6"	pcs	1,700.00	1955.00	
2	ф=4"	pcs	480.00	552.00	"
3	ф=3"	pcs	280.00	322.00	"
4	φ =2 1/2"	pcs	190.00	218.50	"
5	ф=2"	pcs	95.00	109.25	"
6	φ=1 1/2"	pcs	70.00	80.50	"
7	ф=1"	pcs	35.00	40.25	"
8	φ=3/4"	pcs	25.00	28.75	"
9	φ=1/2"	pcs	20.00	23.00	"

		,			
	Elbow				
1	ф=6"	pcs	1,800.00	2,070.00	"
2	ф=4"	pcs	580.00	667.00	"
3	ф=3"	pcs	380.00	437.00	"
4	φ=2 1/2"	pcs	250.00	287.50	"
5	ф=2"	pcs	110.00	126.50	"
6	φ=1 1/2"	pcs	90.00	103.50	"
7	ф=1"	pcs	35.00	40.25	"
8	ф=3/4"	pcs	25.00	28.75	"
9	φ =1/2"	pcs	30.00	34.50	"
	Tee				
1	ф=6"	pcs	1,980.00	2,277.00	"
2	ф=4"	pcs	650.00	747.50	"
3	ф=3"	pcs	450.00	517.50	"
4	φ= 2 1/2"	pcs	380.00	437.00	"
5	ф=2 "	pcs	180.00	207.00	"
6	ф=2"	pcs	180.00	207.00	"
7	φ =1 1/2"	pcs	130.00	149.50	"
8	φ=1"	pcs	35.00	40.25	"
9	ф=3/4"	pcs	25.00	28.75	"
10	φ =1/2"	pcs	25.00	28.75	"
	Cross Tee			0.00	"
1	ф=6"	pcs	1,500.00	1,725.00	"
2	ф=4"	pcs	1,400.00	1,610.00	"
3	ф=3"	pcs	1,200.00	1,380.00	"
4	φ=2 1/2"	pcs	800	920.00	"
5	ф=2 "	pcs	480.00	552.00	"
6	φ=1 1/2"	pcs	250.00	287.50	"
7	ф=1"	pcs	180.00	207.00	"
8	ф=3/4"	pcs	110.00	126.50	"
9	ф=1/2"	pcs	70.00	80.50	"

	<u>. Obeen Development rig</u>	<u> </u>	••••••	••••••	
	Reducer			0.00	
1	φ=6 "x φ=4 "	pcs	1,700.00	1,955.00	"
2	φ=6 "x φ =3"	pcs	1,700.00	1,955.00	"
3	φ=6 "x φ=1 1/2"	pcs	1,700.00	1,955.00	11
4	φ =4"x φ =3"	pcs	480.00	552.00	11
5	φ=4"x φ=1 1/2"	pcs	480.00	552.00	11
6	φ=3"x φ=2 1/2"	pcs	380.00	437.00	11
7	φ=3"x φ= 1 1/2"	pcs	380.00	437.00	11
8	φ=21/2"x φ=2"	pcs	280.00	322.00	11
9	φ=21/2"x φ=11/2"	pcs	280.00	322.00	11
10	φ=2"x φ=11/2"	pcs	95.00	109.25	11
11	φ=1"x φ=3/4"	pcs	35.00	40.25	11
	Water meter				
1	φ=8"(Flanged)	pcs	16,500.00	18,975.00	"
2	φ=6"(Flanged)	pcs	16,000.00	18,400.00	11
3	φ=4"(Flanged)	pcs	14,000.00	16,100.00	11
4	φ=3"(Flanged)	pcs	8,900.00	10,235.00	11
5	ф=2 1/2"	pcs	6,000.00	6,900.00	11
6	ф=2"	pcs	4,200.00	4,830.00	11
7	φ =1 1/2"	pcs	1,950.00	2,242.50	11
8	ф=1"	pcs	1,300.00	1,495.00	11
9	φ= 3/4"	pcs	980.00	1,127.00	11
	Gate valve				
1	φ=8"(Flanged)	pcs	19,000.00	21,850.00	11
2	φ=6"(Flanged)	pcs	18,000.00	20,700.00	"
3	φ=4"(Flanged)	pcs	9,500.00	10,925.00	"
4	φ=3"(Flanged)	pcs	8,800.00	10,120.00	11
5	ф=2 1/2"	pcs	1,500.00	1,725.00	11
6	ф=2 "	pcs	950.00	1,092.50	11
7	φ=1 1/2"	pcs	550.00	632.50	11
8	φ=1"	pcs	180.00	207.00	"

9	φ = 3/4"	pcs	150.00	172.50	"
10	φ = 1/2"	pcs	120.00	138.00	"
	Cheek valve				
1	ф=6"	pcs	20,000.00	23,000.00	11
2	ф=4"	pcs	15,000.00	17,250.00	11
3	ф=3"	pcs	12,000.00	13,800.00	"
4	ф=2 1/2"	pcs	3,800.00	4,370.00	"
5	ф=2 "	pcs	2,900.00	3,335.00	11
6	ф=1 1/2"	pcs	1,880.00	2,162.00	"
7	ф=1"	pcs	1,200.00	1,380.00	"
8	ф=3/4"	pcs	350.00	402.50	"
9	φ =1/2"	pcs	280.00	322.00	"

HDPE- PIPES

	HDPE PIPES(PN-				
	16)				
1	HDPE pipe 18.5mm	m	25.00	28.75	"
2	HDPE pipe 25mm	m	29.00	33.35	"
3	HDPE pipe 38mm	m	45.00	51.75	"
4	HDPE pipe 50mm	m	53.00	60.95	"
5	HDPE pipe 63mm	m	69.00	79.35	"
6	HDPE pipe 75mm	m	110.00	126.50	"
7	HDPE pipe 100mm	m	220.00	253.00	"
8	HDPE pipe 150mm	m	330.00	379.50	"
9	HDPE pipe 200mm	m	450.00	517.50	"
10	HDPE pipe 250mm	m	650.00	747.50	"
11	HDPE pipe 300MM	m	800.00	920.00	"
	HDPE PIPE (PN-10)				
1	HDPE pipe 18.5mm	m	10.00	11.50	"
2	HDPE pipe 25mm	m	15.00	17.25	"
3	HDPE pipe 38mm	m	35.00	40.25	"

Onom	. Cheen Development rig	<u>50110 y</u>									
4	HDPE pipe 50mm	m	39.00	44.85	"						
5	HDPE pipe 63mm	m	49.00	56.35	11						
6	HDPE pipe 75mm	m	69.00	79.35	"						
7	HDPE pipe 100mm	m	165.00	189.75	"						
8	HDPE pipe 150mm	m	220.00	253.00	"						
9	HDPE pipe 200mm	m	360.00	414.00	"						
10	HDPE pipe 250mm	m	500.00	575.00	"						
11	HDPE pipe 300MM	m	690.00	793.50	"						
HDPE FITTINGS COUPLING											
1			4 000 00	4600.00							
1	$\phi = 300 \text{MM}$	pes	4,000.00	4000.00							
2	$\psi = 2.301$ MM	pes	3,300.00	4023.00							
3	φ=200MM	pcs	3,000.00	3450.00							
4	φ=150mm	pcs	2,500.00	2875.00	"						
5	φ=100mm	pcs	1,880.00	2162.00	"						
6	φ=75mm	pcs	430.00	494.50	"						
7	ф=63mm	pcs	280.00	322.00	"						
8	ф=50mm	pcs	180.00	207.00	11						
9	ф=38mm	pcs	39.00	44.85	11						
10	φ=18.5mm	pcs	25.00	28.75	"						
	ADAPTOR										
1	ф=300ММ	pcs	4,200.00	4830.00	"						
2	ф=250MM	pcs	3,700.00	4255.00	"						
3	ф=200MM	pcs	3,200.00	3680.00	"						
4	φ=150mm	pcs	2,700.00	3105.00	"						
5	ф=100mm	pcs	1,800.00	2070.00	"						
6	φ=75mm	pcs	380.00	437.00	"						
7	φ=63mm	pcs	280.00	322.00	"						
8	φ=50mm	pcs	180.00	207.00	"						
9	φ=38mm	pcs	39.00	44.85	"						
L	1	1	1	1	1						

φ=25mm	pcs	30.00	34.50	"
φ=18.5mm	pcs	25.00	28.75	"
ELBOW				
ф=300MM	pcs	4,000.00	4,600.00	"
ф=250MM	pcs	3,500.00	4,025.00	"
ф=200MM	pcs	3,000.00	3,450.00	"
φ=150mm	pcs	2,500.00	2,875.00	"
φ=100mm	pcs	1,880.00	2,162.00	"
φ=75mm	pcs	480.00	552.00	"
φ=63mm	pcs	310.00	356.50	"
φ=50mm	pcs	220.00	253.00	"
ф=38mm	pcs	45.00	51.75	"
φ=18.5mm	pcs	25.00	28.75	"
REDUCER				
φ=300MM-250mm	pcs	3,800.00	4,370.00	"
φ=250MM-200mm	pcs	3,200.00	3,680.00	"
ф=200MM- 150mm	pcs	2,900.00	3,335.00	"
ф=150MM- 100mm	pcs	2,200.00	2,530.00	"
ф=100MM- 75mm	pcs	1,300.00	1,495.00	"
φ=75mm-50mm	pcs	450.00	517.50	"
φ=50mm-38mm	pcs	180.00	207.00	"
φ=38mm-25mm	pcs	140.00	161.00	"
TEE			0.00	"
ф=300ММ	pcs	4,000.00	4,600.00	"
ф=250ММ	pcs	3,500.00	4,025.00	"
ф=200ММ	pcs	3,000.00	3,450.00	"
φ=150mm	pcs	2,500.00	2,875.00	"
ф=100mm	pcs	1,800.00	2,070.00	"
φ=75mm	pcs	380.00	437.00	"
ф=63mm	pcs	280.00	322.00	"
φ=50mm	pcs	230.00	264.50	"
	φ=25mmφ=18.5mm ELBOW φ=300MMφ=250MMφ=150mmφ=100mmφ=63mmφ=63mmφ=38mmφ=18.5mm REDUCER φ=300MM-250mmφ=250MM-200mmφ=150MM-100mmφ=150MM-100mmφ=150MM-100mmφ=100MM-75mmφ=250MM-250mmφ=200MM-150mmφ=100MM-150mmφ=150MM-100mmφ=150MM-100mmφ=150MM-100mmφ=100MM-75mmφ=100MM-75mmφ=50mm-38mmφ=38mm-25mmφ=300MMφ=300MMφ=50mm-38mmφ=300MMφ=50mm-38mmφ=300MMφ=50mmφ=50mm	φ=25mm pcs φ=18.5mm pcs ELBOW φ=300MM pcs φ=250MM pcs φ=200MM pcs φ=100mm pcs φ=100mm pcs φ=100mm pcs φ=50mm pcs φ=50mm pcs φ=38mm pcs φ=18.5mm pcs φ=300MM-250mm pcs φ=200MM-150mm pcs φ=200MM-150mm pcs φ=100MM-75mm pcs φ=100MM-75mm pcs φ=100MM-75mm pcs φ=50mm-38mm pcs φ=50mm-38mm pcs φ=300MM pcs φ=50mm-38mm pcs φ=250MM pcs φ=250MM pcs φ=100MM pcs φ=300MM pcs φ=50mm pcs φ=100MM pcs φ=250MM pcs φ=250MM pcs	φ=25mmpcs30.00φ=18.5mmpcs25.00ELBOWφ=300MMpcs4,000.00φ=250MMpcs3,500.00φ=200MMpcs3,000.00φ=150mmpcs2,500.00φ=100mmpcs1,880.00φ=75mmpcs480.00φ=63mmpcs310.00φ=50mmpcs220.00φ=38mmpcs25.00φ=300MM-250mmpcs25.00φ=300MM-250mmpcs3,800.00φ=250MM-200mmpcs2,200.00φ=100MM-75mmpcs1,300.00φ=100MM-75mmpcs1,300.00φ=38mm-25mmpcs140.00TEEφ=300MMpcs3,500.00φ=250MMpcs3,500.00φ=38mm-25mmpcs140.00fefφ=300MMpcs3,000.00φ=250MMpcs3,000.00φ=300MMpcs3,000.00φ=300MMpcs3,000.00φ=300MMpcs3,000.00φ=300MMpcs3,000.00φ=300MMpcs3,000.00φ=300MMpcs3,000.00φ=300MMpcs3,000.00φ=300MMpcs3,000.00φ=300MMpcs3,000.00φ=300MMpcs3,000.00φ=300MMpcs3,000.00φ=300MMpcs3,000.00φ=400MMpcs3,000.00φ=400MMpcs	$\phi=25 mm$ pcs 30.00 34.50 $\phi=18.5mm$ pcs 25.00 28.75 ELBOW $$

	<u> </u>				
9	φ=38mm	pcs	45.00	51.75	"
10	φ=18.5mm	pcs	35.00	40.25	"
	PVC Vent cap				"
1	ф=80mm	pcs	120.00	138.00	"
	GI floor Drain				"
1	ф=200mm	pcs	850.00	977.50	"
	Faucet				"
1	ф=18.5	pcs	120.00	138.00	"
2	φ=12.5mm	pcs	180.00	207.00	"
1	Joint compactor	kg	8.70	10.00	"
2	Нетр	kg	8.70	10.00	"

ii. BENEFIT FACTOR

Description	ETB
Monthly income (Provisional cost)	312.00
Working days per month	26.00
Daily income	12.00
Yearly income	3,744.00
Working days per year	312.00
Project Time in years	1/4

			Yearly			
Item	Description	Days/year	Expense	Assumptions		
1	Annual leave	14	117.60	70% of the workers(when it		
		14	117.00	excludes daily laborer)		
2	Sick leave	2	12.60	50% of the 70%workers may be		
		5	12.00	sick.		
3	Medical Service	62.40	74 88	20% of their salary for 10% of the		
		02.40	/4.00	workers		
4	Transport allowance	15.60	187.20	15% of their salary		
5	Insurance	31.20	374.40	10% of their salary		
6 Mourning Leave		3	25.20	70% of the workers may encounter		
		5	23.20	once in a year		
7	Holidays	9	75 60	there is 12 holidays in a year and		
		9	75.00	70% of them rests on		
8	Compensation		300.00	As per Ethiopian Labor law		
9	Maternity		5.40	2% of 25% of the workers		
10	Rainy Season	13.00	156.00	for 2 Months, retain 50% of the		
		13.00	130.00	workers		
11	Bonus (incentive) per year	13.00	156.00	50% of his salary per year		
12	Overtime (shall be allowed	7.80	93.60	1/4 hour per day with double of		
	by the engineer)	7.00	75.00	his salary		
	Total		1578.48			
	Benefit Factor	42%				

iii. MAN POWER COSTS

		Daily	Hourly		Indexed
Item		Rate	Rate	Benefit	Rate
No.	Description Of Labor	(ETB)	(ETB)	Factor	(ETB)
1	Forman	500.00	62.50	142%	88.85
2	Mason II	500.00	62.50	142%	88.75
3	Mason I	250.00	31.25	142%	44.38
4	Carpenter II	500.00	62.50	142%	88.75
5	Carpenter I	250.00	31.25	142%	44.38
6	Plasterer	500.00	62.50	142%	88.75
7	Tiller	500.00	62.50	142%	88.75
8	Chiseler	250.00	31.25	142%	44.38
9	Bar Bender II	250.00	31.25	142%	44.38
10	Bar Bender I	150.00	18.75	142%	26.63
11	Gang Chief	250.00	31.25	142%	44.38
12	Daily Laborer	150.00	18.75	142%	26.63
13	Electrician	500.00	62.50	142%	88.75
14	Plumber	500.00	62.50	142%	88.75
15	Mixer &Vibrator Operator	350.00	43.75	142%	62.13
16	Helper	150.00	18.75	142%	26.63
17	Truck Driver	400.00	50.00	142%	71.00
18	Equipment Operator I	800.00	100.00	142%	142.00
19	Equipment Operator II	850.00	106.25	142%	150.88
20	Equipment Operator III	900.00	112.50	142%	159.75
21	Welder	500.00	62.50	142%	88.75
22	Painter	500.00	62.50	142%	88.75

iv. EQUIPMENT RENTAL COST

							Salvage		Tir	e	
		Rated	HP	Initial			Value	Size	Qty	Unit	Price
N	o Equipment Type	Capacity		Cost	Life T	'ime	10%E			Price	(Set)
				(ETB)	(Hour)	Yr	(ETB)			(ETB)	(ETB)
А	В	С	D	Е	F	G	Н	Ι	J	K	L
1	Dump Truck	7 M3	240	950,000	12,000	6	95,000	11x20,	10	1924.2	19242
								12x20			
2	Water Truck	6000	150	850,000	12,000	6	85,000	11x20,12x20	6	1924.2	11545
		Lit									
3	Excavator, wheel Type	1.0 – 1.5M3	150	4,500,000	12,000	6	450,000	15.5x25	4	4000.0	16000
4	Concrete Vibrator	4 Hp	4	90,000	8,000	4	9,000				0
5	Concrete Mixer, trailer	250 Lit.	15	150,000	16,000	8	15,000	6.5x16	2	484.41	968.82
	mounted										
6	Compressor, Trailer	250CFM	65	216,945	15,000	7	21,695	6.5x16	2	484.41	968.8
	Mounted										
7	Pick up, single cab, 4x4,	1 Ton	85	650,000	11,000	5	65,000	7.5x16	4	605.76	2423
	Diesel										
8	HDPE Welder, Electric	300 -400 AMP		367,890	8,000	4	36,789				19242

	Depreci			Re	epair	Cost	Fuel (Consur	nption	Se	ervice				
	ation		Insuran							Cost		Tier	Owning	Operatin	Rental
	Cost	Interest	ce Rate									Cost	Cost	g Cost	Rate
									Cost						
		=E(=(E*	*P/10	0)*G/F			=T*						
Tire	=(E-L-	$(1+0.03)^{F/2}$					Fact	(D*	F				(N+O+	(S+V+X+	
Life	H)/F	⁰⁰⁰)-1/F					or	T)	cost			=L/M	Q)	Y)	$(\mathbf{Z}+\mathbf{Z}^1)$
	ETB/H				%	ETB	Lit/h	Lit/	ETB	%	ЕТВ	ETB	ЕТВ		ETB
Hour	r)	ETB /Hr)	%		Ν	/Hr)	/Hp	Hr	/Hr	V	/Hr	/Hr	/Hr	ETB /Hr	/Hr
М	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	Z ¹	A ¹
1500	69.6	15	2.2	10	80	55	0.14	33.6	638	20	127.	12	95.4	834	930.08
1800	62.7	13	2.2	9.3	80	50	0.14	21.0	399.	20	79.8	6.4	85.8	535	621.33
2500	336	72	1.2	27	70	235	0.15	22.5	427	25	106	6.4	435	776	1212.0
0	10.1	1.4	0.4	0.1	50	5.0	0.14	0.56	15.6	7	1.1	0.0	11.7	21	33.56
2500	8.38	2.5	0.4	0.3	50	4.1	0.14	2.10	39.9	14	5.6	0.3	11.1	50	61.24
2500	12.9	3.5	0.4	0.4	50	6.4	0.14	9.10	172	14	24.2	0.3	16.9	203	220.95
2100	52.9	10	1.6	5.2	50	26	0.14	11.9	226	16	36.2	1.1	68.5	289	358.5
0	41.3	5.7	0.4	0.7	50	20	0.00	0.00	0.00	0	0.0	0.0	47.9	20	68.59

v. OVERHEAD & PROFIT

SUMMARY OF INDIRECT SITE COST									
No	Description	Amount							
А	Supervision	681,600.00							
В	Administration	398,736.00							
С	Plant and tools	429,000.00							
D	Office furniture, Equipment and materials	129,720.00							
Е	Financial	169,950.00							
	Total indirect site cost	1,809,006.00							
	Estimated Project cost	11,000,000.00							

OVER HEAD & PROFIT									
No	Project expense description	Percentage, %							
1	Percentage of Indirect site cost	16.45							
2	Profit and Risk margin	5.00							
	Total over head & profit cost	21.45 (TAKE 20%)							

	INDIRECT SITE COSTS											
A) SUPERVISOR STAF												
No	Position	Numb	UF	Monthly	Monthly	Monthly	Completion	Total Cost				
•		er		Salary	Indexed	Cost	Time In	In Project				
				(ETB)	Salary	(ETB)	Months	Cost				
								(ETB)				
1	Project Manager	1.00	1.0	30,000.0	1.42	42,600.0	6.00	255,600.0				
2	Project Engineer	1.00	1.0	20,000.0	1.42	28,400.0	6.00	170,400.0				
3	Office Engineer	4.00	1.0	10,000.00	1.42	14,200.0	6.00	340,800.0				
4	General Forman	1.00	1.0	10,000.0	1.42	14,200.0	6.00	85,200.00				
5	Surveyor	1.00	0.2	10,000.0	1.42	14,200.0	6.00	85,200.00				
					То	tal carried t	to summary	681,600.0				

	B) ADMINISTRATION STAF													
1	Administration	1.00	1.00	8,000.00	1.42	11,360.00	6.00	68,160.00						
	and Finance													
2	Personnel	1.00	1.00	5,000.00	1.42	7,100.00	6.00	42,600.00						
3	Accountant	1.00	1.00	5,000.00	1.42	7,100.00	6.00	42,600.00						
4	Casher	1.00	1.00	3,500.00	1.42	4,970.00	6.00	29,820.00						
5	Store keeper	2.00	1.00	1,500.00	1.42	2,130.00	6.00	25,560.00						
6	Time keeper	3.00	1.00	1,200.00	1.42	1,704.00	6.00	30,672.00						
7	Light Vickie	3.00	1.00	2500.00	1.42	3550.00	6.00	63,900.00						
	driver													
8	Cleaner	2.00	1.00	800.00	1.42	1,136.00	6.00	13,632.00						
9	Guard	8.00	1.00	1,200.00	1.42	1,704.00	6.00	81,792.00						
	Total carried to summary 398,736.00													

(C) COMMONLY USED PLANT AND TOOLS														
No	Type of equipment	Number	UF	Rent per	Monthly	Comple	Total cost								
				month	cost	tion	in project								
				(ETB)	(ETB)	time in	cost								
						months	(ETB)								
1	Light Vickie	1.00	1.00	4,500.00	4,500.00	6.00	27,000.00								
2	Pick up	1.00	0.75	30,000.0	22,500.00	6.00	135,000.0								
3	Welding Machine	1.00	0.25	15,000.0	3,750.00	6.00	22,500.00								
4	Water pump	1.00	0.25	10,000.0	2,500.00	6.00	15,000.00								
5	Surveying instrument	1.00	0.25	15,000.0	3,750.00	6.00	22,500.00								
6	Water tank	3.00	1.00	10,000.0	10,000.00	6.00	180,000.0								
7	Plastic hose(200m)	1.00	1.00	4500.00	4500.00	6.00	27000.00								
				Tota	al carried to	summary	429,000.0								

No. Decomption No. Cost Contribution													
No	Description	No	Cost	Completion	Total Cost								
			Per	Time In	In Project								
			Month	Months	Cost								
					(ETB)								
1	Computer with printer	1.00	10,000	6.00	60,000.00								
2	Table	2.00	800.00	6.00	9,600.00								
3	Chair	4.00	600.00	6.00	14,400.00								
4	Shelf	1.00	900.00	6.00	5,400.00								
6	Safe box	1.00	1,200.00	6.00	7,200.00								
7	Adding machine	2.00	50.00	6.00	600.00								
8	Filing cabinet	6.00	120.00	6.00	4,320.00								
9	Stationery	Ls	1,500.00	6.00	9,000.00								
10	Utilities	Ls	2,000.00	6.00	12,000.00								
11	Medicine	Ls	1,200.00	6.00	7,200.00								
		Total carried to summary											

E	E. FINANCIAL COSTS											
No	Description	Amount										
		(ETB)										
1.00	Performance bond $(1.4\% \text{ of } 10\% \text{ project } \text{cost}) = 0.014 \text{ x } 0.15 \text{ x}$	46,200.00										
	11,000,000											
2.00	Interest on unpaid sum = (for average delay of certificate= 15 days) = 0.03	13,750.00										
	x 11,000,000 x 1/ 24											
3.00	Bid bond guarantee	110,000.00										
	(1% of project cost)											
	$= 0.1 \times 11,000,000$											
	Total carried to summary	169,950.00										

Client: Czech Development Agency. D. OFFICE FURNITURE, EOUIPMENT AND MATERIAL

6.1	COST BREAK	REAKDOWN ANALYSIS FOR HDPE PIPES & FITTINGS (PN-16)														Proje Overi Proje	ct Cost= nead &P ct cost +	100% 20%			
				ł	A- Mater	ial cost				B- Labor Cost				C- Equ	uipm	ento	cost	Over	nead=	Di r. cos t	Unit Price
N 0	Description of work	Unit	Type of materi al	Unit	Qty	Rate	Cost per unit	Labor by trade	No	UF	Index ed Hr Cost	out put	cost per unit	Type of Equip.	N 0	U F	Hou rly Ren tal	outp ut per Hr	Cost per unit	Direct cost A+ B+C	Unit price= Dir. Cost + overhea d & profit
1	HDPE PIPES OD 25mm $(\phi=3/4")$	m	Pipes	m	1.05	28.75	30.19	Forman Plumber Daily La.	1 1 2	0.25 1.00 1.00	88.85 88.75 26.63	1.50 1.50 1.50	14.81 59.17 35.50	Tools welding machine	2 1	1 1	3.00 68.5	1.50 10	4.00 6.86		
							30.19						109.48						10.86	150.5	180.63
2	HDPE PIPES OD 32mm (\$\$\\$	m	Pipes	m	1.05	33.35	35.02	Forman Plumber Daily La.	1 1 2	0.25 1.00 1.00	88.85 88.75 26.63	1.50 1.50 1.50	14.81 59.17 35.50	Tools welding machine	2 1	1 1	3.00 68.5	1.50 10	4.00 6.86		
							35.02						109.48						10.86	155.3	186.42
3	HDPE PIPES OD 50mm (\$\$\\$4\$)	m	Pipes	m	1.05	51.75	54.34	Forman Plumber Daily La.	1 1 2	0.25 1.00 1.00	88.85 88.75 26.63	1.00 1.00 1.00	22.21 88.75 26.63	Tools welding machine	2 1	1 1	3.00 68.5 89	1.50 10	4 6.86		
							54.34						137.59						10.85	202.7	243.34
4	HDPE PIPES OD 63mm	m	Pipes	m	1.05	60.95	64.00	Forman Plumber	1	0.25 1.00	88.85 88.75	1.00 1.00	22.21 88.75	Tools welding	2 1	1 1	3.00 68.5	1.5 5	4 13.72		

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report

	(φ=2'')													machine							
								Daily La.	2	1.00	26.63	1.00	26.63								
							64.00						137.59						17.71	219.3	263.16
5	HDPE PIPES OD 75mm	m	Pipes	m	1.05	79.35	83.32	Forman	1	0.25	88.85	0.85	26.13	Tools welding	2	1	3.00	1.75	3.43		
	$(\phi = 2 \ 1/2")$							Plumber	1	1.00	88.75	0.85	104.41	machine	1	1	68.5	5	13.72		
								Daily La.	2	1.00	26.63	0.85	31.32								
													_								
							83.32						161.87						17.15	262.3	314.80
	HDPE																				
6	PIPES OD 90mm	m	Pipes	m	1.05	126.50	132.83	Forman	1	0.25	88.85	0.8	27.77	Tools welding	2	1	3.00	0.75	8.00		
	(φ=3")							Plumber	1	1.00	88.75	0.8	110.94	machine	1	1	68.5	5	13.72		
								Daily La.	2	1.00	26.63	0.8	33.28								
	HDPE						132.83						171.98						21.72	326.5	391.83
7	PIPES OD 110mm	m	Pipes	m	1.05	253.00	265.65	Forman	1	0.25	88.85	0.75	29.62	Tools	2	1	3.00	0.75	8.00		
	(φ= 4")							Plumber	1	1.00	88.75	0.75	118.33	machine	1	1	68.5	2	6.86		
								Daily La.	2	1.00	26.63	0.75	35.50								
	HDDE						265.65						183.45						14.86	463.9	556.75
8	PIPES	m	Pipes	m	1.05	379.50	398.48	Forman	1	0.25	88.85	0.55	40.39	Tools	2	1	3.00	0.75	8.00		
	$(\phi = 6'')$							Plumber	1	1.00	88.75	0.55	161.36	machine	1	1	68.5	2	6.86		
								Daily La.	2	1.00	26.63	0.55	48.41								
							398.48						250.16						14.86	663.4	796.19
	HUDE																				
9	PIPES	m	Pipes	m	1.05	517.50	543.38	Forman	1	0.25	88.85	0.55	40.39	Tools	2	1	3.00	0.75	8.00		
	OD 200mm (φ= 8")							Plumber	1	1.00	88.75	0.55	161.36	welding machine	1	1	68.5	1	6.86		
	(* *)							Daily La.	2	1.00	26.63	0.55	48.41		-	-	0010	-	0.00		
								•													

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report

							543.38						250.16						14.86	808.3	970.07
1 0	HDPE PIPES	m	Pipes	m	1.05	747.50	784.88	Forman	1	0.25	88.85	0.55	40.39	Tools	2	1	3.00	0.75	8.00		
	OD 250mm							Dl	1	1.00	00 75	0.55	1(1.2)	welding	1	1	(9.5	1	(8 50		
	(φ=10 ^{··})							Plumber	1	1.00	88.75	0.55	101.30	machine	1	1	08.5	1	68.59		
								Daily La.	2	1.00	20.03	0.55	48.41								
							784 88						250.16						76 59	1 111 6	1 333 0
GA	TE VALVE												200110						10.09	1,111.0	1,000.0
1	Gate valves	No.	Valve	No	1	138.00	138.00	Forman	1	0.25	88.85	4.00	5.55	Tools	2	1	0.40	4.0	0.20		
	Diameter		Ţ																		
	12.5mm (φ=1")		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	4.00	22.19								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	4.00	6.66								
							138.01						34.40						0.20	172.6	207.12
2	Gate valves Diameter	No.	Valve	No	1	172.50	172.50	Forman	1	0.25	88.85	4.00	5.55	Tools	2	1	3.00	4.0	1.5		
	18.75mm		J.																		
	(φ=3/4'')		comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	4.00	22.19								
			Нетр	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	4.00	6.66								
							172 51						34.40						1.5	208.4	250.08
							172.01						J4.40						1.0	200.4	230.00
3	Gate valves	No.	Valve	No	1	207.00	207.00	Forman	1	0.25	88.85	3.00	7.40	Tools	2	1	3.00	3.0	2.00		
	Diameter		Ŧ																		
	25mm (φ=1")		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	3.00	29.58								
			Нетр	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	3.00	8.88								
								-													
	~						207.01						45.86						2.00	254.8	305.84
4	Gate valves	No.	Valve	No	1	632.50	632.50	Forman	1	0.25	88.85	3.00	7.40	Tools	4	1	3.00	3.0	4.00		
	Diameter		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	3.00	29.58								
	38mm		-	U																	
	(φ=1 1/2")		Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	3.00	8.88								
Í							632.51						45.86						4.00	682.3	818.84

5	Gate valves	No.	Valve	No	1	1092.5	1,092.5	Forman	1	0.25	88.85	2.50	8.89	Tools	2	1	3.00	2.5	2.4		
	Diameter		J. comp.	Kg	0.04	0.07	0.00	Plumber	1	1.00	88.75	2.50	35.50								
	SUMM		Hemp	Kg	0.02	0.50	0.01	Daily La.	2	1.00	26.63	2.50	10.65								
	(φ=2")						1,092.5						55.04						2.4	1,149	1,379.9
6	Gate valves	No.	Valve	No	1	1725.0	1,725.00	Forman	1	0.25	88.85	2.50	8.89	Tools	2	1	3.00	2.5	2.4		
	Diameter		т																		
	03mm (φ-2 1/2'')		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.50	35.50								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	2.50	10.65								
			-																		
							1,725.0						55.04						2.4	1,782.	2,138.9
7	Gate valves	No.	Valve	No	1	10,120	10,120.00	Forman	1	0.25	88.85	2.50	8.89	Tools	2	1	3.00	2.5	2.4		
	75mm		J.																		
	(φ= 3 ")		comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.50	35.50								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	2.50	10.65								
							10,120.						55.04						2.4	10,177	12,212.
8	Gate valves	No.	Valve	No	1	10,925	10,925.00	Forman	1	0.25	88.85	2	11.11	Tools	2	1	3.00	2.0	3		
	Diameter		J. comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38								
	100mm		Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.63	2	13.31								
	(φ=4'')			8					_			_									
							10,925.						68.79						3	10,997.3	13,196.8
9	Gate valves	No.	Valve	No	1	20,700	20,700.00	Forman	1	0.25	88.85	2	11.11	Tools	2	1	3.00	2.0	3	,	
	Diameter		_			,	,														
	150mm (φ= 6'')		J. comp	Kσ	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38								
	0)		Hemp.	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.63	2	13.31								
			memp	8	0102	10000	20,700.	2 uii, 2 ui	-	100	20100	-	68.79						3	20.772.3	24.926.8
							20,7000														
		N	X 7 1	N		21050	31 95 0 00	Б	1	0.05	00.07	•		T 1	•	1	2.00	2.0	2		
10	Gate valves Diameter	No.	Valve	No	1	21850.	21,850.00	Forman	1	0.25	88.85	2	11.11	Tools	2	1	3.00	2.0	3		
1	200mm (φ=		J.																		
	8'')		comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.63	2	13.31								

							21,850.						68.79						3	21,922.3	26,306.8
UNIC	ON (COUPLI	NG)																			
1	Union Diameter	No.	Union J.	No	1	28.75	28.75	Forman	1	0.25	88.85	4.00	5.55	Tools	2	1	3.00	4.0	1.5		_
	25mm		comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	4.00	22.19								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	4.00	6.66								
							28.76						34.40						1.5	64.65	77.58
2	Union Diameter	No.	Union J.	No	1	44.85	44.85	Forman	1	0.25	88.85	3.00	7.40	Tools	4	1	3.00	3.0	4.0		
	32mm		comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	3.00	29.58								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	3.00	8.88								
							44.86						45.86						4.0	94.72	113.66
3	Union Diameter	No.	Union J.	No	1	207.00	207.00	Forman	1	0.25	88.85	2.50	8.89	Tools	2	1	3.00	2.5	2.4		
	50mm		comp.	Kg	0.04	0.07	0.00	Plumber	1	1.00	88.75	2.50	35.50								
			Hemp	Kg	0.02	0.50	0.01	Daily La.	2	1.00	26.63	2.50	10.65								
							207.01						55.04						2.4	264.45	317.34
4	Union Diameter	No.	Union J.	No	1	322.00	322.00	Forman	1	0.25	88.85	2.50	8.89	Tools	2	1	3.00	2.5	2.4		
	63mm		comp.	Kg	0.04	0.03	0.001	Plumber	1	1.00	88.75	2.50	35.50								
			Hemp	Kg	0.02	0.20	0.004	Daily La.	2	1.00	26.63	2.50	10.65								
							322.01						55.04						2.4	379,44	455.33
5	Union Diameter	No.	Union J.	No	1	494.50	350.00	Forman	1	0.25	88.85	2.50	8.89	Tools	2	1	3.00	2.5	2.4		
	75mm		comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.50	35.50								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	2.50	10.65								
							350.01						55.04						2.4	407.44	488.93
6	Union	No.	Union	No	1	2162.0	2,162.00	Forman	1	0.25	88.85	1.5	14.81	Tools	2	1	3.00	2.0	3		
	Diameter		т																		
	90mm		J. comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	1.5	59.17								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.63	1.5	17.75								
			•	U			2,162.	-					<u>91.73</u>						3	2,257.33	2,708.79

7	Union Diamatan	No.	Union T	No	1	2875.0	2,875.00	Forman	1	0.25	88.85	1.5	14.81	Tools	2	1	3.00	2.0	3		
	160mm		J. comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	1.5	59.17								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.63	1.5	17.75								
							2,875.						91.73						3	2,970.33	3,564.39
8	Union	No.	Union	No	1	3450.0	3,450.	Forman	1	0.25	88.85	1.5	14.81	Tools	2	1	3.00	2.0	3		
	Diameter 200mm		J.	Κσ	0.04	10.00	0.40	Plumber	1	1.00	88 75	15	59 17								
	20011111		Hemn	Ka	0.04	10.00	0.40	Daily La	2	1.00	26.63	1.5	17 75								
			nemp	ns	0.02	10.00	3,450,60	Daily Da.	-	1.00	20.05	1.0	91.73						3	3.545.33	4.254.39
													71110					· · · · ·	~	0,010100	1,201107
9	Union	No.	Union	No	1	4025.0	4.025.	Forman	1	0.25	88.85	1.5	14.81	Tools	2	1	3.00	2.0	3		
	Diameter		J.				,														
	250mm		comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	1.5	59.17								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.63	1.5	17.75								
							4,025.60						91.73						3	4,120.33	4,944.39
ADA	PTER(FEM A	ALE/ M	ALE)																		
1	Adapter	No.	Nipple	No	1	28.75	28.75	Forman	1	0.25	88.85	4.00	5.55	Tools	2	1	3	4	1.5		
	18.5mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	4.00	22.19								
			Нетр	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	4.00	6.66								
				0			28.76	, i					34.40						1.50	64.65	77.58
														_							
2	Adapter	No.	Nipple	No	1	34.50	34.50	Forman	1	0.25	88.85	4.00	5.55	Tools	2	1	3.00	3.0	2.00		
	Diameter 25mm		J	Ka	0.04	0.03	0.00	Plumbor	1	1.00	88 75	4 00	22.10								
	2511111		Homn	Ka	0.04	0.05	0.00	Daily I a	2	1.00	26.63	4.00	6 66								
			nemp	мg	0.02	0.20	34 51	Daily La.	-	1.00	20.05	4.00	34 40						2.00	70.90	85.08
							54.51	-					54.40	-					2.00	10.20	05.00
3	Adapter	No.	Nipple	No	1	44.85	44.85	Forman	1	0.25	88.85	3.00	7.40	Tools	4	1	3	3	4		
-	Diameter		J		_																
	32mm		.comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	3	29.58								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.62	3	8.88						4.00	04.55	112.00
							44.86						45.86						4.00	94.72	113.66
4	A dort	NI-	Ni	NT-	1	207.00	207.00	Former	1	0.25	00 05	2 50	0 00	T!-	•		2 00	35	3 40		
4	Adapter	INO.	пирріе	INO	1	207.00	207.00	rorman	1	0.25	ðð.ð5	2.50	0.89	1 00IS	2	1	3.00	2.5	2.40		

	Diameter		J.																		
	50mm		comp.	Kg	0.04	0.07	0.00	Plumber	1	1.00	88.75	2.50	35.50								
			Hemp	Kg	0.02	0.50	0.01	Daily La.	2	1.00	26.63	2.50	10.65								
							207.01						55.04						2.40	264.45	317.34
5	Adapter	No.	Nipple	No	1	322.00	322.00	Forman	1	0.25	88.85	2.5	8.89	Tools	2	1	3	2.5	2.4		
	Diameter		J.	T/	0.04	0.02	0.00			1 00	00 77	2 50	25 50								
	63mm		comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.50	35.50								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	2.50	10.65								
							322.01						55.04						2.4	379.44	455.33
6	Adapter	No.	Nipple	No	1	437.00	437.00	Forman	1	0.25	88.85	2.50	8.89	Tools	2	1	3	2.5	2.4		
	75mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.5	35.50								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.62	2.5	10.65								
			memp	8	0102	0.20	437.01	2	-	1.00	20102	2.00	55.04						2.4	494.44	593.33
							107101						22101								0,000
7	Adapter	No.	Nipple	No	1	2070.0	2,070.00	Forman	1	0.25	88.85	2.00	11.11	Tools	2	1	3	2	3		
	Diameter						,														
	110mm/		J.	V	0.04	10.00	0.40	Disasta	1	1.00	00 75	2.00	44 20								
	90mm		comp.	ĸg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2.00	44.58								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.63	2.00	13.31								
							2,070.60						68.79						3.00	2,142.4	2,570.87
0				•		2105.0	2 105 00	F			00 0 -	• • • •		T 1	•		2.00	• •	2.00		
8	Adapter Diameter	No.	Nipple	No	1	3105.0	3,105.00	Forman	1	0.25	88.85	2.00	11.11	Tools	2	1	3.00	2.0	3.00		
	160mm		comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2.00	44.38								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.63	2.00	13.31								
			•	0			3,105.60	·					68.79						3.00	3,177.4	3,812.87
9	Adapter	No.	Nipple	No	1	3680.0	3.680.00	Forman	1	0.25	88.85	1.00	22.21	Tools	2	1	3	2	3		
	Diameter		J.				- ,														
	200mm		comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	1	88.75								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.62	1	26.63								
							3,680.60						137.59						3.00	3,821.2	4,585.43
10	Adapter	No.	Nipple	No	1	4255.0	4,255.00	Forman	1	0.25	88.85	1.00	22.21	Tools	2	1	3.00	2.0	3.00		
	Diameter		J.	Ka	0.04	10.00	0.40	Dlumbor	1	1.00	88 7F	1.00	88 75								
	23011111		Comp.	Ng Va	0.04	10.00	0.40	Delly Le	1	1.00	00.13	1.00	00.15								
			нетр	Кg	0.02	10.00	0.20	Daily La.	2	1.00	20.03	1.00	20.03						2.00	1 20 4 1	5 0 7 5 40
							4,255.60						137.59						3.00	4,396.1	5,275.43

ELB	ow																				
1	Flbow	No	Flbow	No	1	28 75	28 75	Forman	1	0.25	88 85	3.00	7 40	Tools	2	1	3.00	3.00	2.0		
	Diameter	110.	J.	110	1	20.75	20.75	rorman	•	0.20	00.05	5.00	7.40	10015	-	•	5.00	5.00	2.0		
	18.5mm		comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	3.00	29.58								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	3.00	8.88								
							28.76						45.86						2.0	76.62	91.94
2	Elbow	No.	Elbow	No	1	51.75	51.75	Forman	1	0.25	88.85	3.00	7.40	Tools	4	1	3.00	3.00	4.0		
	Diameter 38mm		J.	Ka	0.04	0.03	0.00	Dlumbor	1	1.00	88 75	3.00	20.58								
	John		Homp.	Ka	0.04	0.03	0.00	Doily Lo	2	1.00	26.63	3.00	27.30 8 88								
			nemp	мg	0.02	0.20	51.76	Dany La.	2	1.00	20.05	5.00	45.86						4.0	101.6	121.04
							51.70						45.00						4.0	101.0	141,74
3	Flbow	No	Flbow	No	1	253.00	253.00	Forman	1	0.25	88 85	2 50	8 80	Tools	2	1	3.00	2 50	24		
5	Diameter	140.	J	140	1	233.00	233.00	ronnan	1	0.23	00.05	2.30	0.07	1 0015	4	1	5.00	2.30	2.4		
	50mm		.comp.	Kg	0.04	0.07	0.00	Plumber	1	1.00	88.75	2.50	35.50								
			Hemp	Kg	0.02	0.50	0.01	Daily La.	2	1.00	26.63	2.50	10.65								
							253.01						55.04						2.4	310.4	372.54
4	Elbow	No.	Elbow	No	1	356.50	356.50	Forman	1	0.25	88.85	2.50	8.89	Tools	2	1	3.00	2.50	2.4		
	Diameter 63mm		J. comp	Kσ	0.04	0.03	0.00	Plumher	1	1.00	88.75	2.50	35.50								
			Hemn	Ko	0.02	0.20	0.00	Daily La	2	1.00	26.63	2.50	10.65								
			munp	8	0102	0120	356.	Duily Dui	-	100	20100		55.04						2.4	413.9	496.73
																					170110
5	Elbow	No.	Elbow	No	1	552.00	552.00	Forman	1	0.25	88.85	2.50	8.89	Tools	2	1	3.00	2.50	2.4		
•	Diameter	1101	J.	110	-	002000		1 01 11111	-	0120	00102		0.03	10015	-	-	0.00				
	/ 5mm / 80mm		comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.50	35.50								
	PVC vent		Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	2.50	10.65								
	cape						552.01						55.04						2.4	609.4	731.33
6	Elbow Diamatar	No.	Elbow	No	1	2162.00	2,162	Forman	1	0.25	88.85	2	11.11	Tools	2	1	3.00	2.00	3		
	100mm		J. comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.63	2	13.31								
			-	-			2,162	-					68 <mark>.</mark> 79						3	2,234.3	2,681.27
7	Elbow	No.	Elbow	No	1	2875.00	2,875	Forman	1	0.25	88.85	2	11.11	Tools	2	1	3.00	2.00	3		

	Diameter		J.																		
	150mm		comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.63	2	13.31	_							
							2,875						68.79						3	2,947.3	3,536.87
8	Elbow	No.	Elbow	No	1	3450.00	3.450	Forman	1	0.25	88.85	2	11.11	Tools	2	1	3.00	2.00	3		
Ū	Diameter	1.01	J.	110	-	0 10 0100	0,100		-	0.20	00102	-		10015	-	-			U		
	200mm		comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38								
	/ 200mm Floor																				
	Drainage/		Hemp	Kg	0.02	10.00	0.20	Dailv La.	2	1.00	26.63	2	13.31								
				8			3 450						68 79						3	3 522 3	4 226 87
													00.79							0,022.0	7,220.07
TE	E/CROSS	TEE																			
1	Tee	No	Taa	No	1	40.25	40.25	Farman	1	0.25	00 05	4 00	E	Tool	2	1	0.40	4.00	0.2		
1	Diameter	INO.	J.	NO	1	40.25	40.25	Forman	1	0.25	00.05	4.00	5.55	8	2	1	0.40	4.00	U		
	25mm		comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	4.00	22.19								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	4.00	6.66								
													24.40						0.2	- 4 0 -	
							40.26						34.40						0	74.85	89.82
														Teel							
2	Tee	No.	Тее	No	1	51.75	51.75	Forman	1	0.25	88.85	4.00	5.55	5	2	1	3.00	4.00	1.5		
	Diameter		J.																		
	32mm		comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	4.00	22.19								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	4.00	6.66								
							51.76						34.40						1.5	87.65	105.18
	T		T.	N		264 50	264 50	r.			00.0	2 50	0.00	Tool	•		2.00		• •		
3	Tee Diameter	N0.	Tee	No	1	264.50	264.50	Forman	1	0.25	88.8	2.50	8.89	S	2	1	3.00	2.5	2.4		
	50mm		comp.	Kg	0.04	0.07	0.00	Plumber	1	1.00	88.7	2.50	35.50								
			Hemp	Kg	0.02	0.50	0.01	Daily La.	2	1.00	26.6	2.50	10.65								
				8			264.51						55.04						2.4	321.95	386.34
							201101						22101	•							
														Tool							
4	Tee	No.	Tee	No	1	322.00	322.00	Forman	1	0.25	88.85	2.50	8.89	s	2	1	3.00	2.50	2.4		
	Diameter		J.	Va	0.04	0.02	0.00	Dhumber	1	1.00	00 7F	2.50	25 50								
	031010		comp.	кg	0.04	0.03	0.00	riunder	1	1.00	00./5	2.50	33.50								
			нетр	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	2.50	10.65								
							322.01						55.04						2.4	379.44	455.33

5	Tee Diameter	No.	Tee J.	No	1	437.00	437.00	Forman	1	0.25	88.85	2.50	8.89	Tool s	2	1	3.00	2.50	2.4		
	75mm		comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.50	35.50								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	2.50	10.65								
														I							
							437.01						55.04						2.4	494.44	593.33
														Tool							
6	Tee	No.	Tee	No	1	2070.00	2,070.00	Forman	1	0.25	88.85	2	11.11	s	2	1	3.00	2.00	3		
	Diameter 110mm/		т																		
	90mm		comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.63	2	13.31								
							2,070.60						68.79						3	2,142.4	2,570.87
														T I							
7	Tee	No.	Tee	No	1	2875.00	2,875.00	Forman	1	0.25	88.85	2	11.11	T OOI S	2	1	3.00	2.00	3		
	Diameter		J.	TZ	0.04	10.00	0.40		1	1.00	00 77	•	44.20								
	150mm		comp.	Kg Ka	0.04	10.00	0.40	Plumber Deily Le	1	1.00	88.75	2	44.38								
			пешр	кg	0.02	10.00	2 875 60	Daily La.	2	1.00	20.03	2	15.51 68 70						3	2 947 4	3 536 87
							2,075.00						00.79						5	2,747.4	3,330.07
														Tool							
8	Tee Diameter	No.	Tee	No	1	3450.00	3,450.00	Forman	1	0.25	88.85	2	11.11	S	2	1	3.00	2.00	3		
	200mm		comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.63	2	13.31								
							3,450.60						68.79						3	3,522.4	4,226.87
REDI	ICER																				
1	Reducer	No.	Reducer	No	1	161.00	161.00	Forman	1	0.25	88.85	4.00	5.55	Tools	2	1	3.00	4.0	1.5		•
	Diameter		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	4.00	22.19								
	32mm-		Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	4.00	6.66								
	25mm		-				161.01						34.40						1.5	196.9	236.28
2	Reducer	No.	Reducer	No	1	207.00	207.00	Forman	1	0.25	88.85	3.00	7.40	Tools	4	1	3.00	3.0	4.00		
	Diameter		J. comp.	Kg	0.04	0.03	0.001	Plumber	1	1.00	88.75	3.00	29.58								
	50mm-		Hemp	Kg	0.02	0.20	0.004	Daily La.	2	1.00	26.63	3.00	8.88								
	32mm						207.01						45.86						4.00	256.87	308.24

3	Reducer	No.	Reducer	No	1	517.50	517.50	Forman	1	0.25	88.85	2.50	8.89	Tools	2	1	3.00	2.5	2.4		
	Diameter		J. comp.	Kg	0.04	0.07	0.003	Plumber	1	1.00	88.75	2.50	35.50								
	63mm-		Hemp	Kg	0.02	0.50	0.010	Daily La.	2	1.00	26.63	2.50	10.65								
	50mm						517.51						55.04						2.4	574.95	689.94
														-							
4	Reducer	No.	Reducer	No	1	517.50	517.50	Forman	1	0.25	88.85	2.50	8.89	Tools	2	1	3.00	2.5	2.4		
	Diameter		J. comp.	Kg	0.04	0.03	0.001	Plumber	1	1.00	88.75	2.50	35.50								
	75mm-		Hemp	Kg	0.02	0.20	0.004	Daily La.	2	1.00	26.63	2.50	10.65								
	63mm						517.51						55.04						2.4	574.94	689.93
_	Reducer							_										2.5			
5	Diameter	No.	Reducer	No	1	1495.00	1,495.00	Forman	1	0.25	88.85	2.50	8.89	Tools	2	1	3.00	0	2.4		
	110mm/		J. comp.	Kg	0.04	0.03	0.001	Plumber	1	1.00	88.75	2.50	35.50								
	90mm-		Hemp	Кg	0.02	0.20	0.004	Daily La.	2	1.00	26.63	2.50	10.65						2.4	1 552 4	1 962 02
	75mm						1,495.01												2.4	1,552.4	1,002.95
6	Reducer	No	Reducer	No	1	2530.00	2 530 00	Forman	1	0.25	88 85	2	11 11	Tools	2	1	3 00	2.0	3		
Ŭ	Diameter	110.	L comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38	10013	-	1	5.00	2.0	5		
	150mm-		Нетр	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.63	2	13.31								
	110mm		- I	8																	
	/90mm						2 520 60						<0 7 0							2 (02 4	2 1 2 2 0 5
							2,530.60						68.79						5	2,602.4	3,122.87
7	Reducer	No	Doducor	No	1	3335.00	3 335 00	Forman	1	0.25	88 85	15	14 81	Tools	2	1	3.00	2.0	3		
<i>'</i>	Diameter	110.	L comp	Ka	0.04	10.00	0.40	Plumber	1	1.00	88 75	1.5	14.01 50 17	10015	4	1	5.00	2.0	5		
	200mm-		J. comp. Hemn	Ko	0.02	10.00	0.20	Daily La	2	1.00	88.75	1.5	59.17								•
	150mm		memp		0.02	10.00		Duity Eu.	-	1.00	00112	110									
							3,335.60						133.14						3	3,471.74	4,166.09
e	Reducer	No	Doducor	No	1	3680 00	3 680 00	Formen	1	0.25	88 9Z	15	1/ 91	Tools	n	1	3 00	2.0	2		
o	Diameter	190.	L comp	NO	1	10.00	3,080.00 0.40	Plumbor	1	0.25	00.05 88 75	1.5	14.01 50.17	1 0018	2	1	5.00	2.0	3		
	250mm-		J. Comp. Homn	Ka	0.04	10.00	0.40	Daily I a	2	1.00	88 75	1.5	59.17								
	200mm		nemp	ng	0.02	10.00	0.20	Daily La.	2	1.00	00.75	1	59.17								
							3,680.60						133.14						3	3,816.74	4,580.09
																Proj	ect Cost	=	1	00%	
6.2	COST BRI	EAKD	OWN AN	ALYS	SIS FC	OR GAL	VANIZEI) IRON PI	PES	& FITT	FINGS ((CLAS	S-B)		o	verhe	ad &Pro	ofit=	:	20%	

																Pr	oject cos	st + Overł	nead=	120%	
				A- N	laterial	cost				B- Lab	or Cost				C-	Eau	ipment	cost		Direct cost	Unit Price
N o	Description of work	Unit	Type of material	Unit	Qty	Rate	Cost per unit	Labor by trade	No	UF	Index ed Hr Cost	out put	cost per unit	Type of Equip	N o	UF	Hour ly Rent al	out put per Hr	Cost per unit	Direct cost A+ B+C	Unit price with over head
1	Galvanized	m	Pipes	m	1.05	178.25	187.16	Forman	1	0.25	88.85	3.00	7.40	Tool	2	1	3.00	1.50	4.00		
	Diameter		J. comp.	gram	12	0.03	0.36	Plumber	1	1.00	88.75	3.00	29.58								
	18.75mm		Hemp	gram	6	0.20	1.20	Daily La.	2	1.00	26.63	3.00	17.75								
	(φ=3/4)		Access.	No.	0.2	4.00	0.80	l													
							189.52						54.74						4.00	248.26	297.91
2	Galvanized pipe Diameter 25mm	m	Pipes J. comp.	m gram	1.05 12	302.83 0.03	317.98 0.36	Forman Plumber	1 1	0.25 1.00	88.85 88.75	3.00 3.00	7.40 29.58	Tools	2	1	3.00	1.50	4.00		
	(φ=1 ")		Hemp	gram	6	0.20	1.20	Daily La.	2	1.00	26.63	3.00	17.75								
			Access.	No.	0.2	4.00	0.80	l													
							320.34						54.74						4.00	379.07	454.89
3	Galvanized pipe Diameter 38mm (φ=1 1/2")	m	Pipes J. comp. Hemp	m gram gram	1.05 12 6	456.17 0.05 0.30	478.98 0.60 1.80	Forman Plumber Daily La.	1 1 2	0.25 1.00 1.00	88.85 88.75 26.63	2.00 2.00 2.00	11.11 44.38 26.63	Tools	2	1	3.00	1.00	6		
			Access.	No.	0.2	3.50	0.70														
							482.08						82.11						6	570.18	684.22
4	Galvanized pipe Diameter 50mm (Φ= 2")	ml	Pipes J. comp.	m gram	1.05 12	536.67 0.03	563.50 0.36	Forman Plumber	1 1	0.25 1.00	88.85 88.75	2.00 2.00	11.11 44.38	Tools	2	1	3.00	1	6		
	(+ - /		Hemp	gram	6	0.20	1.20	Daily La.	2	1.00	26.63	2.00	26.63								
			Access.	No.	0.2	3.50	0.70 565 76						82.11						6	653 87	784 64

5	Galvanized	m	Pipes	m	1.05	632.50	664.13	Forman	1	0.25	88.85	1	22.21	Tools	2	1	3.00	0.90	6.67		
	Diameter		J. comp.	gram	12	0.03	0.36	Plumber	1	1.00	88.75	1	88.75								
	63mm (φ= 2 1/2")		Hemp	gram	6	0.20	1.20	Daily La.	2	1.00	26.63	1	53.25								
			Access.	No.	0.2	3.50	0.70	-													
							666.39						164.2						6.67	837.26	1,004.72
6	Galvanized	m	Pipes	m	1.05	762.83	800.98	Forman	1	0.25	88.85	0.8	27.77	Tools	2	1	3.00	0.75	8.00		
	Diameter		J. comp.	aram	12	0.07	0.84	Plumber	1	1.00	88.75	0.8	110.9 4								
	75mm (φ= 3")		Hemp	gram	6	0.50	3.00	Daily La.	2	1.00	26.63	0.8	66.56								
			Access.	No.	0.2	6.00	1.20														
							806.02						205.2						8.00	1,019.2	1,223.14
7	Galvanized	m	Pines	m	1 05	1035.0	1 086 7	Forman	1	0 25	88 85	0.88	25 24	Tool	2	1	3 00	0 75	8 00		
Ľ	Diameter		i ipoo			100010	1,00017	i onnun	•	0.20	00.00	0.00	20.21	1001	-	•	0.00	0.10	0.00		
	(φ= 4")		J. comp.	gram	12	0.07	0.84	Plumber	1	1.00	88.75	0.88	100.8								
			Hemp	gram	6	0.50	3.00	Daily La.	2	1.00	26.63	0.88	60.51								
			Access.	No.	0.2	6.00	1.20														
	Oshussiand						1,091						186.6						8.00	1,286.4	1,543.67
8	pipe	m	Pipes	m	1.05	1200.0	1,260.0	Forman	1	0.25	88.85	0.55	40.39	Tool	2	1	3.00	0.75	8.00		
	mm		J. comp.	gram	12	0.07	0.84	Plumber	1	1.00	88.75	0.55	161.3								
	(φ= 6")		Hemp	gram	6	0.50	3.00	Daily La.	2	1.00	26.63	0.55	48.41								
			Access.	No.	0.2	6.00	1.20														
							1,265.						250.1						8.00	1,523.2	1,827.84
	Gate valve																				
1	Gate valves	No.	Valve	No	1	138.00	138.00	Forman	1	0.25	88.85	4.00	5.55	Tools	2	1	0.4	4	0.2		
	Diameter		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	4	22.19								
	12.5mm		Hemp	Κα	0.02	0.20	0.00	Dailv La.	2	1.00	26.62 5	4	13.31								
1	(φ = 1/2'')		•	3	-	-	138.01				-		41.05						0.2	179.26	215.11
	(1)																				
2	Gate valves	No.	Valve	No	1	172.50	172.50	Forman	1	0.25	88.85	4.00	5.55	Tool	2	1	3	4	1.5		

	Diameter		÷																		
	18.75mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	4.00	22.19								
	(φ=3/4")		Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.62	4	6.66								
							172.51						34.40						1.5	208.40	250.08
2	Coto volvoo	Na	Value	Na		007.00	007.00	Formon	4	0.05	00.05	2.00	7 40	Teel	•		•	•	•		
3	Diameter	NO.	valve	NO		207.00	207.00	Forman		0.25	00.05	3.00	7.40	1001	2	•	3	3	2		
	25mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	3.00	29.58								
	(φ=1")		Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	3.00	8.88								
							207.01						45.86						2	254.87	305.84
4	Gate valves	No.	Valve	No	1	632.50	632.50	Forman	1	0.25	88.85	3.00	7.40	Tool	4	1	3.00	3	4		
	Diameter		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	3.00	29.58								
	38mm		Hemp	Κα	0.02	0.20	0.00	Dailv La.	2	1.00	26.63	3.00	8.88								
	(φ= 1 1/2")						632 51		_				45.86						4	682 37	818 84
							002.01						40.00						-	002.07	010.04
						1092.5	1,092.5														
5	Gate valves	No.	Valve	No	1	0	0	Forman	1	0.25	88.85	2.5	8.89	Tool	2	1	3	2.5	2.4		
	50mm		J. comp.	Kg	0.04	0.07	0.00	Plumber	1	1.00	88.75	2.5	35.50								
	(φ=2")		Hemp	Kg	0.02	0.50	0.01	Daily La.	2	1.00	26.63	2.5	10.65								
	,						1,092						55.04						2.40	1,149.9	1,379.94
6	Gate valves	No.	Valve	No	1	1725.0	1,725.0	Forman	1	0.25	88.85	2.5	8.89	Tool	2	1	3.00	2.5	2.40		
	Diameter		J. comp.	Κα	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.5	35.50								
	63mm		Home	Ka	0.02	0.00	0.00	Deily Le	•	1 00	26.62	2.5	10.65								
	(φ=2 1/2")		nemp	кy	0.02	0.20	0.00	Dally La.	2	1.00	20.03	2.5	10.05								
	(Flanged)																				
							1,725						55.04						2.40	1,782.4	2,138.93
7	.	No.	Valve	No	1	10,120	10,120	Forman	1	0.25	88.85	2.5	8.89	Tool	2	1	3.00	2.5	2.40		
	Gate valves Diameter		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.5	35.50								
	75mm		Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	2.5	10.65								
	(ψ=ა) (Flanged)						10,120						55.04						2.40	10,177	12,212.93

8	Gate valves	No.	Valve	No	1	10,925	10,925	Forman	1	0.25	88.85	2	11.11	Tool	2	1	3.00	2	3.00		
	100mm		J. comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38								
	(φ=4") (Flanged)		Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.63	2	13.31								
							10,925						68.79						3.00	10,997	13,196.87
	Gate valves																				
9	Diameter	No.	Valve	No	1	20,700	20,700	Forman	1	0.25	88.85	2	11.11	Tool	2	1	3.00	2	3.00		
	150mm (ф=6")		J. comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38								
	(Flanged)		Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.63	2	13.31								
							20,700						<mark>68.79</mark>						3.00	20,772.	24,926.87
	Gate valves																				
10	Diameter	No.	Valve	No	1	21,850	21,850	Forman	1	0.25	88.85	2	11.11	Tool	2	1	3	2	3		
	200mm (φ= 8")		J. comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38								
	(Flanged)		Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.62	2	13.31								
							21,850						68.79						3.00	21,922	26,306.87
Uni	<mark>on</mark> Union																				
1	Diameter	No.	Valve	No	1.05	28.75	30.19	Forman	1	0.25	88.85	4.00	5.55	Tool	2	1	0.4	4	0.2		
	ISHIM		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	4	22.19								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.62	4	6.66								
							30.19						34.40						0.2	64.79	77.75
	Union																				
2	Diameter	No.	Valve	No	1	40.25	40.25	Forman	1	0.25	88.85	4	5.55	Tool	2	1	3	4	1.50		
	2011		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75 26.62	4	22.19								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	5	4	6.66								
							40.26						34.40						1.5	76.15	91.38
	Union																				
3	Diameter 25mm	No.	Valve	No	1	69.00	69.00	Forman	1	0.25	88.85	3	7.40	Tool	2	1	3	3	2		
			J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	3	29.58								

			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	3.00	8.88								
							69.01						45.86						2	116.87	140.24
	Union																				
4	Diameter	No.	Valve	No	1	126.50	126.50	Forman	1	0.25	88.85	3	7.40	Tool	4	1	3	3	4		
	38mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	3.00	29.58								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.62	3	8.88								
							126.51						45.86						4	176.37	211.64
	Union																				
5	Diameter	No.	Valve	No	1	184.00	184.00	Forman	1	0.25	88.85	2.50	8.89	Tool	2	1	3	2.5	2.4		
	50mm		J. comp.	Kg	0.04	0.07	0.00	Plumber	1	1.00	88.75 26.62	2.5	35.50								
			Hemp	Kg	0.02	0.50	0.01	Daily La.	2	1.00	5	2.5	10.65								
							184.01						55.04						2.4	241.45	289.74
6	Union Diameter	No.	Valve	No	1	322.00	322.00	Forman	1	0.25	88.85	2.5	8.89	Tool	2	1	3	2.5	2.40		
	63mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.5	35.50								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	5	2.5	10.65								
							322.01						55.04						2.4	379.44	455.33
7	Union	No.	Valve	No	1	448.50	350.00	Forman	1	0.25	88.85	2.5	8.89	Tool	2	1	3	2.5	2.4		
	75mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.5	35.50								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	2.50	10.65								
							350.01						55.04						2.4	407.44	488.93
8	Union	No.	Valve	No	1	747.50	747.50	Forman	1	0.25	88.85	1	22.21	Tool	2	1	3	2	3		
	Diameter 100mm		J .comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	1.00	88.75								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.62	1	26.63								
							748.10						137.5						3	888.69	1,066.43
9	Union	No.	Valve	No	1	2415.0	2,415.0	Forman	1	0.25	88.85	1.00	22.21	Tool	2	1	3	2	3		

	Diameter		Loomn	Ka	0.04	10.00	0.40	Dlumbor	4	1.00	99 75	1	99 75								
	1301111		U. comp.	Ka	0.07	10.00	0.40	Deily Le	י י	1.00	06.75	1	06.75								
			нетр	кy	0.02	10.00	2 415	Dally La.	2	1.00	20.02	I	137.5						2	2 556 1	3 067 43
Nii	onles						2,413						107.0						J	2,550.1	3,007.43
	Ninnlee	Ne	ninnla	Ne		02.00	02.00	Formon		0.05	00.05	4.00	E E E	Teel	0		0.4		0.0		
'	Diameter	NO.	прріе	NO	1	23.00	23.00	Forman	1	0.25	00.00	4.00	0.00	1001	2	1	0.4	4	0.2		
	15mm		J. comp.	Кg	0.04	0.03	0.00	Plumber	1	1.00	88.75	4	22.19								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.62	4	6.66							57 00	00.40
							23.01						34.40						0.2	57.60	69.12
2	Nipples Diameter	No.	Nipple	No	1	28.75	28.75	Forman	1	0.25	88.85	4	5.55	Tool	2	1	3	4	1.50		
	20mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	4	22.19								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.62	4	6.66								
							28.76						34.40						1.5	64.65	77.58
3	Nipples Diameter	No.	Nipple	No	1	40.25	40.25	Forman	1	0.25	88.85	3	7.40	Tool	2	1	3	3	2		
	25mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	3	29.58								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	3.00	8.88								
							40.26						45.86						2	88.12	105.74
4	Nipples	No.	Nipple	No	1	80.50	80.50	Forman	1	0.25	88.85	3	7.40	Tool	4	1	3	3	4		
	38mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	3.00	29.58								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.62	3	8.88								
							80.51						45.86						4	130.37	156.44
5	Nipples	No.	Nipple	No	1	109.25	109.25	Forman	1	0.25	88.85	2.50	8.89	Tool	2	1	3	2.5	2.4		
	Diameter 50mm		J. comp.	Kg	0.04	0.07	0.00	Plumber	1	1.00	88.75	2.5	35.50								
			Hemp	Kg	0.02	0.50	0.01	Daily La.	2	1.00	26.62	2.5	10.65								
							109.26						55.04						2.4	166.70	200.04
								-													
6	Nipples	No.	Nipple	No	1	218.50	218.50	Forman	1	0.25	88.85	2.5	8.89	Tool	2	1	3	2.5	2.40		

	Diameter																				
	63mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.5	35.50								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.62	2.5	10.65								
							218.51						55.04						2.4	275.94	331.13
7	Nipples	No.	Nipple	No	1	322.00	322.00	Forman	1	0.25	88.85	2.5	8.89	Tool	2	1	3	2.5	2.4		
-	Diameter		Loomn	Ka	0.04	0.02	0.00	Dlumbor		1.00	00 75	2.0	25 50		-	•	•				
	7511111		J. comp.	ĸy	0.04	0.03	0.00			1.00	00.75	2.5	35.50								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.62	2.5	10.65								
							322.01						55.04						2.4	379.44	455.33
8	Nipples	No.	Nipple	No	1	552.00	552.00	Forman	1	0.25	88.85	2.00	11.11	Tool	2	1	3	2	3		
	Diameter 100mm		J.comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38								
			Hemp	Kq	0.02	10.00	0.20	Daily La.	2	1.00	26.62	2	13.31								
			•	Ŭ			552.60						68 79						3	624 39	749 27
							002.00						00.13							024.00	145.21
9	Nipples Diameter	No.	Nipple	No	1	1955.0	1,955.0	Forman	1	0.25	88.85	1	22.21	Tool	2	1	3	2	3.00		
	150mm		J .comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	1	88.75								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.62	1	26.63								
							1,955						137.5						3	2,096.1	2,515.43
Elb	ow																				
1	Elbow	No.	Elbow	No	1	34.50	34.50	Forman	1	0.25	88.85	4.00	5.55	Tool	2	1	0.4	4	0.2		
	Diameter		Lcomp	Ka	0.04	0.03	0.00	Dlumber	1	1 00	88 75	4	22 10								
	101111		U. comp.	Kg Ka	0.07	0.00	0.00	Deiby Le	•	1.00	17.75	4	4 4 4								
			петр	ĸġ	0.02	0.20	0.00	Dally La.	2	1.00	17.75	4	4.44								
							34.51						32.18						0.2	66.88	80.26
2	Elbow Diameter	No.	Elbow	No	1	28.75	28.75	Forman	1	0.25	88.85	4	5.55	Tool	2	1	3	4	1.50		
	20mm		J .comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	4	22.19								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	17.75	4	4.44								
							28.76						32.18						1.5	62.43	74.92
3	Elbow	No.	Elbow	No	1	40.25	40.25	Forman	1	0.25	88.85	3	7.40	Tool	2	1	3	3	2		
	Diameter		Lcomp	Ka	0.04	0.03	0.00	Plumber	1	1.00	88 75	-	20 58		-	·	-	-	-		
Elb 1 2 3	Elbow Diameter 15mm Elbow Diameter 20mm	No. No.	Hemp Elbow J. comp. Hemp Elbow J. comp. Hemp Elbow J. comp.	Kg No Kg No Kg No Kg	0.02 1 0.04 0.02 1 0.04 0.02 1 0.04	10.00 34.50 0.03 0.20 28.75 0.03 0.20 40.25 0.03	0.20 1,955 34.50 0.00 0.00 34.51 28.75 0.00 0.00 28.76 40.25 0.00	Daily La. Forman Plumber Daily La. Forman Plumber Daily La. Forman Plumber	2 1 1 2 1 2 1 1 1	1.00 0.25 1.00 1.00 0.25 1.00 1.00 0.25 1.00	26.62 88.85 88.75 17.75 88.85 88.75 17.75 88.85 88.85 88.75	1 4.00 4 4 4 4 4 3 3 3	26.63 137.5 5.55 22.19 4.44 32.18 5.55 22.19 4.44 32.18 7.40 29.58	Tool	2 2 2	1	0.4 3 3	4 4 3	3 0.2 0.2 1.50	2,096.1 66.88 62.43	2,515.43 80.26 74.92

			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	17.75	3.00	5.92								
							40.26						42.90						2	85.16	102.19
4	Elbow Diameter	No.	Elbow	No	1	103.50	103.50	Forman	1	0.25	88.85	3	7.40	Tool	4	1	3	3	4		
	38mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	3.00	29.58								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	17.75	3	5.92	l							
							103.51						42.90						4	150.41	180.49
5	Elbow Diameter	No.	Elbow	No	1	126.50	126.50	Forman	1	0.25	88.85	2.50	8.89	Tool	2	1	3	2.5	2.4		
	50mm		J. comp.	Kg	0.04	0.07	0.00	Plumber	1	1.00	88.75	2.5	35.50								
			Hemp	Kg	0.02	0.50	0.01	Daily La.	2	1.00	17.75	2.5	7.10								
							126.51						51.49						2.4	180.40	216.48
6	Elbow Diameter	No.	Elbow	No	1	287.50	287.50	Forman	1	0.25	88.85	2.5	8.89	Tools	2	1	3	2.5	2.40		
	63mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.5	35.50								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	17.75	2.5	7.10								
							287.51						51.49						2.4	341.39	409.67
_						407.00	407.00	-		0.05				-	•						
7	Elbow Diameter	NO.	Elbow	NO	1	437.00	437.00	Forman	1	0.25	88.85	2.5	8.89	1001	2	1	3	2.5	2.4		
	/5mm		J. comp.	Кg	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.5	35.50								
			петр	ĸġ	0.02	0.20	427.01	Dally La.	2	1.00	17.75	2.50	7.10 51.40						2.4	400.80	590.07
							437.01						51.45						2.4	450.05	569.07
8	Flbow	No	Elbow	No	1	667.00	667.00	Forman	1	0 25	88 85	2 00	11 11	Tool	2	1	3	2	3		
Ŭ	Diameter	NO.	.L. comp	Ka	0.04	10.00	0.40	Plumber	1	1 00	88 75	2.00	44 38	1001	2	•	5	2	J		
			Hemn	Ka	0.04	10.00	0.40	Daily I a	2	1.00	17 75	2	8.88								
			nemp	Ng	0.02	10.00	667.60	Duny Lu.	-	1.00	11.15	-	64.36						3	734.96	881.95
														I							
9	Elbow	No.	Elbow	No	1	2070.0 0	2,070.0 0	Forman	1	0.25	88.85	2	11.11	Tool	2	1	3	2	3.00		

	Diameter 150mm		J. comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	17.75	2	8.88								
							2,070						64.36						3	2,137.9	2,565.55
Те	e																				
1	Tee Diameter	No.	Tee	No	1	28.75	28.75	Forman	1	0.25	88.85	4.00	5.55	Tool	2	1	0.4	4	0.2		
	15mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75 26.62	4	22.19								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	5	4	6.66								
							28.76						34.40						0.2	63.35	76.02
2	Tee Diameter	No.	Тее	No	1	28.75	28.75	Forman	1	0.25	88.85	4	5.55	Tool	2	1	3	4	1.50		
	20mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75 26.62	4	22.19								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	5	4	6.66								
							28.76						34.40						1.5	64.65	77.58
3	Tee Diameter	No.	Тее	No	1	40.25	40.25	Forman	1	0.25	88.85	3	7.40	Tool	2	1	3	3	2		
	25mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	3	29.58								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	3.00	8.88								
							40.26						45.86						2	88.12	105.74
4	Tee Diameter	No.	Тее	No	1	149.50	149.50	Forman	1	0.25	88.85	3	7.40	Tool	4	1	3	3	4		
	38mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75 26.62	3.00	29.58								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	5	3	8.88								
	-		-		_		149.51			0.05			45.86	T	•		•		4	199.37	239.24
5	Tee Diameter	NO.	lee	NO	1	207.00	207.00	Forman	1	0.25	88.85	2.50	8.89	1001	2	1	3	2.5	2.4		
	50mm		J. comp.	Kg	0.04	0.07	0.00	Plumber	1	1.00	88.75	2.5	35.50								
			нетр	кg	0.02	0.50	207.01	Dally La.	2	1.00	26.62	2.5	10.65						2.4	264 45	217.24
e	Tee	No	Tee	No	1	137 00	<u>207.01</u>	Forman	4	0.25	88 95	25	8 20	Tool	n	1	2	25	2.4	204.43	317.34
	Diameter 63mm	110.	J. comp.	Ka	0.04	0.03	0.00	Plumber	' 1	1.00	88.75	2.5	35.50	1001	2	•	5	2.0	2.40		

			Hemp	Kg	0.02	0.20	437.00	Daily La.	2	1.00	26.62	2.5	10.65						2.40		
							874.00						55.04						4.8	933.84	1,120.60
7	Tee Diameter	No.	Tee	No	1	517.50	517.50	Forman	1	0.25	88.85	2.5	8.89	Tool	2	1	3	2.5	2.4		
	75mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.5	35.50								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	2.50	10.65								
							517.51						55.04						2.4	574.94	689.93
8	Tee Diameter	No.	Tee	No	1	747.50	747.50	Forman	1	0.25	88.85	2.00	11.11	Tool	2	1	3	2	3		
	100mm		J. comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75 26.62	2	44.38								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	5	2	13.31								
							748.10						<mark>68.79</mark>						3	819.89	983.87
9	Tee Diameter	No.	Тее	No	1	2277.0	2,277.0	Forman	1	0.25	88.85	2	11.11	Tool	2	1	3	2	3.00		
	150mm		J. comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.62	2	13.31								
•	.						2,277						68.79						3	2,349.3	2,819.27
Cro	DSS I EE																				
1	Cross Tee Diameter	No.	Тее	No	1	80.50	80.50	Forman	1	0.25	88.85	4.00	5.55	Tool	2	1	0.4	4	0.2		
	15mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	4	22.19								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.62	4	6.66								
							80.51						34.40						0.2	115.10	138.12
2	Cross Tee Diameter	No.	Тее	No	1	126.50	126.50	Forman	1	0.25	88.85	4	5.55	Tool	2	1	3	4	1.50		
	20mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	4	22.19								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.62	4	6.66							100.00	101.00
							126.51						34.40						1.5	162.40	194.88
	0 T	N	Tee	Na		007.00	007.00	F		0.05	00.05	•	7 40	Teels	•		•	•	•		
3	Diameter	NO.	iee	NO Ka	0.04	207.00	207.00	Plumbor	1	1.00	88.85 99.75	ა ი	7.4U 20 50	1 001S	2	I	3	3	2		

			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	3.00	8.88								
							207.01						45.86						2	254.87	305.84
4	Cross Tee	No.	Tee	No	1	287.50	287.50	Forman	1	0.25	88.85	3	7.40	Tools	4	1	3	3	4		
	38mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	3.00	29.58								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	5	3	8.88								
							287.51						45.86						4	337.37	404.84
5	Cross Tee Diameter	No.	Тее	No	1	552.00	552.00	Forman	1	0.25	88.85	2.50	8.89	Tools	2	1	3	2.5	2.4		
	50mm		J. comp.	Kg	0.04	0.07	0.00	Plumber	1	1.00	88.75 26.62	2.5	35.50								
			Hemp	Kg	0.02	0.50	0.01	Daily La.	2	1.00	5	2.5	10.65								
							<u>552.01</u>						55.04						2.4	609.45	731.34
			_					_													
6	Cross Tee Diameter	No.	Tee	No	1	920.00	920.00	Forman	1	0.25	88.85	2.5	8.89	Tools	2	1	3	2.5	2.40		
	63mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75 26.62	2.5	35.50								
			нетр	Кġ	0.02	0.20	0.00	Dally La.	2	1.00	5	2.5	10.65						2.4	077 44	1 172 02
7	Cross Too	No	Too	No	1	1290.0	1 280 0	Formon	4	0.25	99 95	25	9.90	Tools	2	1	2	25	2.4	977.44	1,172.93
'	Diameter	NO.	Loomn	Ka	0.04	0.02	0.00	Plumbor	1	1.00	00.0J	2.5	0.09 25 50	10015	2	1	3	2.5	2.4		
	751111		Hemn	Ka	0.04	0.03	0.00	Daily La	2	1.00	26.63	2.5	10.65								
			nomp	. g	0.02	0.20	1.380	Duny Lu	-		20.00	2.00	55.04						2.4	1.437.4	1.724.93
							.,													.,	
8	Cross Tee	No.	Tee	No	1	1610.0	1,610.0	Forman	1	0.25	88.85	2.00	11.11	Tools	2	1	3	2	3		
	Diameter 100mm		J. comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.62 5	2	13.31								
							1,610						68.79						3	1,682.3	2,018.87
9	Cross Tee	No.	Тее	No	1	1725.0	1,725.0	Forman	1	0.25	88.85	2	11.11	Tools	2	1	3	2	3.00		
	Diameter 150mm		J. comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.62	2	13.31								

							1,725						68.79						3	1,797.3	2,156.87
Re	educer																				
1		No.	Tee	No	1	40.25	40.25	Forman	1	0.25	88.85	4.00	5.55	Tools	2	1	0.4	4	0.2		
	Reducer Diameter		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	4	22.19								
	20mm-15mm		Hemp	Kq	0.02	0.20	0.00	Daily La.	2	1.00	26.62	4	6.66								
				3			40.26						34.40						0.2	74.85	89.82
2		No.	Тее	No	1	40.25	40.25	Forman	1	0.25	88.85	4	5.55	Tools	2	1	3	4	1.50		
	Reducer		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	4	22.19								
	25mm-20mm		Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.62	4	6.66								
							40.26						34.40						1.5	76.15	91.38
3	Reducer	No.	Тее	No	1	109.25	109.25	Forman	1	0.25	88.85	3	7.40	Tools	2	1	3	3	2		
	Diameter		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	3	29.58								
	38mm- 25mm		Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	3.00	8.88								
	201111						109.26						45.86						2	157.12	188.54
4	Reducer Diameter	No.	Тее	No	1	109.25	109.25	Forman	1	0.25	88.85	3	7.40	Tools	4	1	3	3	4		
	50mm-38mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	3.00	29.58								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.62	3	8.88								
							109.26						45.86						4	159.12	190.94
5	Beducer	No.	Тее	No	1	322.00	322.00	Forman	1	0.25	88.85	2.50	8.89	Tools	2	1	3	2.5	2.4		
	Diameter		J. comp.	Kg	0.04	0.07	0.00	Plumber	1	1.00	88.75	2.5	35.50								
	63mm-50mm		Hemp	Kg	0.02	0.50	0.01	Daily La.	2	1.00	26.62 5	2.5	10.65								
							322.01						55.04						2.4	379.45	455.34
6	Reducer	No.	Тее	No	1	437.00	437.00	Forman	1	0.25	88.85	2.5	8.89	Tools	2	1	3	2.5	2.40		
	Diameter 75mm-63mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.5	35.50								

			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.62	2.5	10.65								
							437.01						55.04						2.4	494.44	593.33
7	Reducer	No.	Тее	No	1	552.00	552.00	Forman	1	0.25	88.85	2.5	8.89	Tools	2	1	3	2.5	2.4		
	Diameter		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.5	35.50								
	10mm-75mm		Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	2.50	10.65								
							552.01						55.04						2.4	609.44	731.33
	Reducer																				
8	Diameter	No.	Тее	No	1	1955.0	1,955.0	Forman	1	0.25	88.85	2.00	11.11	Tools	2	1	3	2	3		
	150mm-		J. comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38								
	100mm		Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.62	2	13.31								
							1,955						<u>68.79</u>						3	2,027.3	2,432.87
W	ater meter																				
1	Water	No.	Тее	No	1	1127.0	1,127.0	Forman	1	0.25	88.85	4.00	5.55	Tools	2	1	0.4	4	0.2		
	Meter Diameter		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	4	22.19								
	15mm		Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.62	4	6.66								
							1,127						34.40						0.2	1,161.6	1,393.92
2	Water	No.	Тее	No	1	1495.0	1,495.0	Forman	1	0.25	88.85	4	5.55	Tools	2	1	3	4	1.50		
	Meter Diameter		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75 26.62	4	22.19								
	20mm		Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	5	4	6.66								
							1,495						34.40						1.5	1,530.9	1,837.08
3	Water	No.	Тее	No	1	1495.0	1,495.0	Forman	1	0.25	88.85	3	7.40	Tools	2	1	3	3	2		
	Meter Diameter		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	3	29.58								
	25mm		Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.63	3.00	8.88								
							1,495						45.86						2	1,542.8	1,851.44
4	Water Meter	No.	Тее	No	1	2242.5	2,242.5	Forman	1	0.25	88.85	3	7.40	Tools	4	1	3	3	4		
	MELEI		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	3.00	29.58								

	Diameter																				
	38mm		Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.62	3	8.88						_		
							2,242						45.86						4	2,292.3	2,750.84
	Water		_					_													
5	Meter Diameter	No.	Tee	No	1	4830.0	4,830.0	Forman	1	0.25	88.85	2.50	8.89	Tools	2	1	3	2.5	2.4		
	50mm		J. comp.	Kg	0.04	0.07	0.00	Plumber	1	1.00	88.75	2.5	35.50								
			Hemp	Κα	0.02	0.50	0.01	Daily La.	2	1.00	26.62	2.5	10.65								
					0.02	0.00	4.000		-		_0.0_		55.04						0.4	4 007 4	5 964 94
							4,830						55.04						2.4	4,887.4	5,864.94
6	Water Meter	No.	Тее	No	1	6900.0	6,900.0	Forman	1	0.25	88.85	2.5	8.89	Tools	2	1	3	2.5	2.40		
	Diameter			Κ.,	0.04	0.00	0.00	Diversity		1 00	00 75	0.5	05 50								
	63mm		J. comp.	ĸg	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.5	35.50								
			Hemp	Kg	0.02	0.20	0.00	Daily La.	2	1.00	26.62	2.5	10.65								
							6,900						55.04						2.4	6,957.4	8,348.93
	Water																				
7	Meter Diameter	No.	Tee	No	1	10235	10,235	Forman	1	0.25	88.85	2.5	8.89	Tools	2	1	3	2.5	2.4		
	75mm		J. comp.	Kg	0.04	0.03	0.00	Plumber	1	1.00	88.75	2.5	35.50								
			Hemp	Ka	0.02	0.20	0.00	Dailv La.	2	1.00	26.63	2.50	10.65								
				5			10.025						FF 04						0.4	10.000	10.050.00
							10,235						55.04						2.4	10,292	12,350.95
	Water																				
8	Meter	No.	Tee	No	1	16100	16,100	Forman	1	0.25	88.85	2.00	11.11	Tools	2	1	3	2	3		
	Diameter		Loomn	Ka	0.04	10.00	0.40	Dlumbor	4	1 00	00 75	2	44.20								
	Toomin		J. comp.	ĸy	0.04	10.00	0.40	Fluilibei		1.00	00.75	2	44.30								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.62	2	13.31						_		
							16,100						<mark>68.79</mark>						3	16,172	19,406.87
	Water		_					_							-			-	-		
9	Meter Diameter	NO.	lee	NO	1	18400	18,400	Forman	1	0.25	88.85	2.00	11.11	loois	2	1	3	2	3		
	150mm		J. comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	2	44.38								
			Hemp	Κα	0.02	10.00	0.20	Dailv La.	2	1.00	26.62 5	2	13.31								
							10.400	,	-		-	-	60.70						-	10.470	00 166 07
							10,400						00.79						3	10,472	22,100.07
-	Water																				
0	Meter	No.	Tee	No	1	18975	18,975	Forman	1	0.25	88.85	1	22.21	Tools	2	1	3	2	3.00		

	Diameter 200mm		J. comp. Hemp	Kg Kg	0.04 0.02	10.00 10.00	0.40 0.20	Plumber Daily La.	1 2	1.00 1.00	88.75 26.62 5	1 1	88.75 26.63								
							18,975						137.5						3	19,116	22,939.43
4	Bronze	No	Found	No	1	129.00	129.00	Formon	4	0.95	00 05	6 00	2 70	Taala	2		2	2	2		
	Diameter	NO.	Faucei	NO		130.00	130.00	Forman		0.25	00.00	0.00	3.70	10015	2		3	2	3		
	18.5mm		J. comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	6	14.79								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.62	6	4.44								
							138.60						22.93						3	164.53	197.44
	Bronze																				
2	Faucet	No.	Faucet	No	1	207.00	207.00	Forman	1	0.25	88.85	6	3.70	Tools	2	1	3	2	3.00		
	25mm		J. comp.	Kg	0.04	10.00	0.40	Plumber	1	1.00	88.75	6	14.79								
			Hemp	Kg	0.02	10.00	0.20	Daily La.	2	1.00	26.62	6	4.44								
							207.60						22.93						3	233.53	280.24

6.3	3 COST BR	EAK	LOOWN	ANA	LYSI	S FOR	CIVIL S	STRUCTU	RES	5											
				A-	Materia	al cost				B- Labo	or Cost				C-	Equipn	ent cost			Direct cost	Unit Price
N o	Description of work	Uni t	material	Unit	Qty	Rate	Cost per unit	Labor by trade	N o	UF	Indexed Hr Cost	out put	cost per unit	Type of Equip.	No	UF	Hourly Rental	out put per Hr	Cost per unit	Direct cost A+ B+C	Unit price with over head
EXC	CAVATION & EAR	TH WC	ORK																		
1	Site clearing to an average dept of							G. leader D. labor	1 2	0.10 1.00	44.38 26.63	2 2	2.22 26.63	Tools	2	1	0.16	2	0.16		
	20cm	m^2						Forman	1	0.05	88.85	2	2.22								
													31.07						0.16	31.23	37.47
2	Bulk excavation to a depth not exceeding	2						G. leader D. labor	1 2	0.10 1.00	44.38 26.63	0.75 0.75	5.92 71.00	Tools	2	1	0.16	0.35	0.914		
	1500mm	ms						Forman	1	0.05	88.85	0.75	5.92						0.914	00.75	100 -1
	Tronch												82.84						3	83.75	100.51
3	excavation on							G leader	1	0.10	44.38	0.3	14.79	Tools	2	1	0.16	0.35	0.914		
	Rock formation to a depth							D. labor	2	1.00	26.63	0.3	177.50								
	not exceeding 1500mm	m3						Forman	1	0.05	88.85	0.3	14.81								
													207.10						0.914	208.01	249.62
4	excavation							G. leader	1	0.10	44.38	0.43	10.32	Tools	2	1	0.16	0.35	0.91		
	on ordinary soil	m ³						D. labor	2	1.00	26.63	0.43	123.84								
	up to 150 cm depth							Forman	1	0.05	88.85	0.43	10.33								
	•												144.49						0.91	145.40	174.48
5	Back filling of trench up to 150 cm denth	m ³						G. leader D. labor	1 2	0.10 1.00	44.38 26.63	0.9 0.9	4.93 59.17	Tools	2	1	0.16	0.35	0.91		

								Forman	1	0.05	88.85	0.9	4.94								
													69.03						0.91	69.94	83.93
6	Fill around found.							G. leader	1	0.10	44.38	0.7	6.34	Tools	4	1	0.16	0.3	2.13		
	from site.	m ³						D. labor	4	1.00	26.63	0.7	152.14								
								Forman	1	0.05	88.85	0.7	6.35								
													164.83						2.13	166.96	200.35
7	Ditto but brought from		Selec.mat	m^3	1.2	345.00	414.00	G .leader	1	0.10	44.38	0.83	5.35	Tools	4	1	0.16	0.6	1.07		
	quarry waste	m ³						D. labor	2	1.00	26.63	0.83	64.16								
								Forman	1	0.05	88.85	0.83	5.35								
							414.00						74.86						1.07	489.92	587.91
8	Cart away	m ³																			
								truck Driver	3	1.00	71.00	50	4.26	D. truck	3	1	930	50	55.81		
								D. laborer	2	1.00	26.63	50	1.07	Tools	4	1	0.16	50	0.01		
								Forman	1	0.25	88.85	50	0.44						55.00	(1.50	72.00
													5.77						55.82	61.59	73.90
0	100mm thick		store		0.1	105 50	10.55	mason 1	1	1.00	11 20	15	20.59	Teele	2	1	0.16	15	0.22		
9	hard	III-	stone	111-	0.1	195.50	19.55	mason-1	1	1.00	44.56	1.5	29.38	10018	3	1	0.10	1.5	0.52		
	core							D. labor	3	1.00	26.63	1.5	53.25								
							10.55	Forman	1	0.10	88.75	1.5	5.92 88 75						0.32	108.62	130 34
							19.55						00.75						0.52	108.02	150.54
10	150mm thick	m ²	stone	m ²	0.15	195.50	29.33	mason-1	1	1.00	44.38	1.5	29.58	Tools	3	1	0.16	1.5	0.32		
	hard							D labor	3	1.00	26.63	15	53.25								
	core							Forman	1	0.10	88.75	1.5	5.92								
							29.33						88.75						0.32	118.40	142.07
11	250mm thick	m ²	stone	m ²	0.3	195.50	58.65	mason-1	1	1.00	44.38	1.5	29.58	Tools	3	1	0.16	1.5	0.32		
	nara core							D. labor	3	1.00	26.63	1.5	53.25								
								Forman	1	0.10	88.85	1.5	5.92								
							58.65						88.76						0.32	147.73	177.27

12	300mm/270	m2	stopa	m ²	0.35	105 50	69 12	macon 1	1	1.00	26.63	15	17 75	Tools	2	1	0.16	15	0.32		
12	mm thick	111	stone	111	0.55	195.50	08.45	D labor	2	1.00	20.05	1.5	177.50	10013	5	1	0.10	1.5	0.52		
	nar u cor e							Forman	1	0.10	88.75	1.5	5.92								
							68.43						201.17						0.32	269.91	323.89
								•						•							
13	Soak away pit /Sand fill	m ³	sand	m ³	1.05	609.50	639.98	G. leader	1	0.10	44.38	1	4.44	Tools	4	1	0.16	0.6	1.07		
	/Sund III							D. labor	4	1.00	26.63	1	106.50								
								Forman	1	0.05	88.85	1	4.44	_							
							639.98						115.3						1.07	756.43	907.71
СС	ONCRETE WO	ORK																			
1	C.5 lean	m ²	cement	qnt	0.07 5	569.25	42.69	Forman	1	0.05	88.85	1.63	2.73	Tools	15	1	0.16	1.63	1.472		
	with 100mm /		sand	m3	0.02	609.50	14.63	Mason II	1	0.05	88.75	1.63	2.72	Mixer	1	1	61.24	1.63	37.57		
	80mm		Aggregat	m2	4 0.04	020.00	42 70	G landar	1	0.05	11 29	1.62	1 26	Vibrator	1	1	22.56	1.62	20.58		
	UNICKNESS		e Water-	1115	75	920.00	43.70	G. leader	1	0.05	44.36	1.05	1.50	vibrator	1	1	55.50	1.05	20.38		
			% cement	5%			2.13	D. labor	15	0.05	26.63	1.63	12.25								
			Water= % sand	1%			0.15	M1xer operator	1	0.05	62.13	1.63	1.91								
								Vibrator operator	1	0.05	62.13	1.26	2.47								
							103.30	operator					23.43						59.63	186.36	223.64
2	C-15 concrete	m^3	cement	qnt	2.80	569.25	1,593.90	Forman	1	0.20	88.85	1.26	14.10	Tools	18.0	1.0	0.16	1.26	2.29		
			Sand	m3	0.50	609.50	304.75	Mason	1	1.00	88.75	1.26	70.44	Mixer	1.0	1.0	61.24	1.26	48.60		
			aggregate	m ³	0.75	920.00	690.00	G. leader	1	1.00	44.38	1.26	35.22	Vibrator	1.0	1.0	33.56	1.26	26.63		
			% cement	5%			79.70	D. labor	18	1.00	26.63	1.26	380.36								
			Water= % sand	1%			3.05	Mixer opr	1	1.00	62.13	1.26	49.31								
								Vibrator	1	1.00	62.13	1.26	49.31								
							2,671.39	operator					598.73						77.52	3,347.64	4,017.17
														•							
3	C-20 concrete	m ³	cement	qnt	3.20	569.25	1,821.60	Forman	1	0.20	88.85	1.26	14.10	Tools	15	1	0.16	1.26	1.90		
			Sand	m3	0.50	609.50	304.75	Mason	1	1.00	88.75	1.26	70.44	Mixer	1	1	61.24	1.26	48.60		
			aggregate	m ³	0.75	920.00	690.00	G. leader	1	1.00	44.38	1.26	35.22	operator	1	1	33.56	1.26	26.63		

			Water=	5%			91.08	D. labor	18	1.00	26.63	1.26	380.36								
			Water=	1%			3.05	Mixer	1	1.00	62.13	1.26	49.31								
			<i>h</i> sand					Vibrator	1	1.00	62.13	1.26	49.31								
								operator Bar bend-	1	1.00	44 38	1.26	35.22								
								II carp-II	1	1.00	44.38	1.20	35.22								
							2,910.48	•mp 11		1100		1120	669.16						77.14	3,656.78	4,388.14
4	C-25 concrete	m ³	Cement	qnt	3.60	569.25	2,049.30	Forman	1	0.20	88.85	1.26	14.10	Tools	20	1	0.16	1.26	2.54		
			Sand	m3	0.52	609.50	316.94	Mason-1	1	1.00	88.75	1.26	70.44	Mixer	1	1	61.24	1.26	48.60		
			e Aggregat	m3	0.78	920.00	717.60	G. leader	1	1.00	44.38	1.26	35.22	Vibrator	1	1	33.56	1.26	26.63		
			Water= % cement	5%			102.47	D. labor	18	1.00	26.63	1.26	380.36								
			Water= % sand	1%			3.17	Mixer operator	1	1.00	62.13	1.26	49.31								
								vibrator Operator	1	1.00	62.13	1.26	49.31								
								Bar	1	1.00	44.38	1.26	35.22								
								Carp.1	1	0.50	44.38	1.26	17.61								
							3,189.47						651.55						77.78	3,918.80	4,702.56
5	C-30 concrete	m ³	Cement	qnt	4.00	569.25	2,277.00	Forman	1	0.20	88.85	1.26	14.10	Tools	15	1	0.16	1.26	1.905		
			Sand	m3	0.46	609.50	280.37	Mason-1	1	1.00	88.75	1.26	70.44	Mixer	1	1	61.24	1.26	19.84 1		
			Aggregat e	m3	0.90	920.00	828.00	G. leader	1	1.00	44.38	1.26	35.22	Vibrator Operator	1	1	33.56	1.26	9.524		
			Water= % cement	5%			113.85	D. labor	25	1.00	26.63	1.26	528.27								
			Water= % sand	1%			2.80	Mixer Operator	1	1.00	62.13	1.26	49.31								
								Vibrator Operator	1	1.00	62.13	1.26	49.31								
								Bar	1	1.00	44.38	1.26	35.22								
								Carp.1	1	1.00	44.38	1.26	35.22								
							3,502.02	, ,					817.08						31.27	4,350.37	5,220.45
6	Form work	m ²	Timber	m ²	1.1	69.00	75.90	Forman	1	0.20	88.85	0.8	22.21	Tools	2	1	0.16	0.9	0.533		

			Eucalypt us pole dia.=10m	m	1.00	20.00	20.00	carp-2	1	0.20	88.75	0.8	22.19								
			m Nail (5cm up to 15cm.)	kg	0.07	115.00	8.63	carp-1	1	0.20	44.38	0.8	11.09								
			,					D-labor	2	1.00	26.63	0.8	66.56								
							104.53						122.06						0.533	227.11	272.54
7	Steel reinforcement	Kg	Steel rein.	Kg	1.05	60.00	63.00	Bar bend II	1	1.00	44.38	40	1.11	Tools	2	###	0.16	30	0.01		
			Tie wire 1.5mm	Kg	0.03	92.00	2.76	Bar bend I	1	1.00	26.63	40	0.67	cut.mac	1	###	6.25	30	0.05		
								D .labor	2	1.00	26.63	40	1.33								
							(57)	Forman	1	0.10	88.85	40	0.22						0.00	(0.15	02.00
							03.70						5.55						0.00	09.15	82.98
8	Cement mortar		cement	qnt	4.2	569.25	2,390.85	Masion-1	1	1.00	44.38	0.9	49.31	Tools	10	1	0.16	0.9	1.78		
	production (1:3)	m ³	sand	m3	1.08	609.50	658.26	D. Labor	10	1.00	26.63	0.9	295.83	Mixer	1	1	56.45	0.9	62.72		
			W/Ceme nt	5%			119.54	Mixer operator	1	1.00	62.13	0.9	69.03								
			W/Sand	1%			6.58	Forman	1	0.20	88.85	0.9	19.74								
	Dro. cost						3,175.24						433.91						64.50	3,673.65	4,408.38
9	concrete pipe Dia.= 400mm	m2	pipe	ml	1.10	105.62	116.18	Forman	1	0.10	88.85	1.50	5.92	Tools	2	1	0.16	1.00	0.32		
			Red ash	m3	0.01	40.25	0.40	Mason-2	1	1.00	88.75	1.50	59.17								
			Mortar	m3	0.01	3673.6 5	36.74	D. labor	2	1.00	26.63	1.50	35.50								
							153.32						100.59						0.32	254.23	305.08
M	ASIONERY WOI 50 cm thick	RK																			
1	stone	m ³	stone	m ³	1.30	195.50	254.15	Forman	1	0.2	88.85	0.40	44.43	Tools	4	1	0.16	1.00	2.56		
	foundation		Mortar	m ³	0.24	3673.65	881.68	2	1	1	88.75	0.40	221.88								
	wall.		wa.mot	5%			44.08	D. labor	4	1	26.63	0.40	266.25								
							1,179.91						532.55						2.56	1,715.02	2,058.02
								-													

2	40 cm thick	m ³	stone	m ³	0.98	195.50	191.59	Forman	1	0.2	88.75	0.60	29.58	Tools	4	1	0.16	1.00	2.56		
	masonry		Mortar	m ³	0.24	3673.65	881.68	Mason-	1	1	88.75	0.60	147.92								
	Wall.		wa.mot	5%			44.08	2 D. labor	4	1	26.63	0.60	177.50								
							1,117.35						355.00						2.56	1,474.91	1,769.89
3	25 cm thick stone	m^3	stone	m ³	0.65	195.50	127.08	Forman	1	0.2	88.75	1.00	17.75	Tools	4	1	0.16	1.00	2.56		
	masonry foundation		Mortar	m ³	0.24	3673.65	881.68	Mason- 2	1	1	88.75	1.00	88.75								
	wall.		wa.mot	5%			44.08	D. labor	4	1	26.63	1.00	106.50								
							1,052.83						213.00						2.56	1,268.39	1,522.07
	20cm Thick																				
4	H.C.B. wall	m ²	H.C.B.	No.	13.00	23.00	299.00	Forman	1	0.10	88.85	1.25	7.11	Tools	2	1	0.16	1.25	0.26		
			Mortar	m ³	0.027	4,408.38	119.03	Mason II	1	1.00	88.75	1.25	71.00								
			Waste	5%			5.95	D. laborer	2	1.00	26.63	1.25	42.60								
							423.98						120.71						0.26	544.94	653.93
5	15cm. Thick H.C.B. wall	m^2	H.C.B.	No.	13.00	17.25	224.25	Forman	1	0.10	88.85	1.25	7.11	Tools	2	1	0.16	1.25	0.26		
			Mortar	m ³	0.020 3	4,408.38	89.49	Mason II	1	1.00	88.75	1.25	71.00								
			Waste	5%			4.47	D. laborer	2	1.00	26.63	1.25	42.60								
							318.21						120.71						0.26	439.18	527.01
								_													
FL	VISHING WOR	K																			
1	Cement sand		Cement	Qnt	0.21	320.00	67.20	Masion-1	1	0.05	44.38	1	2.22	Tools	10	1	0.16	1.00	1.60		
	floor finishing	m ²	Sand	m ³	0.054	430.00	23.22	D .Labor	10	0.05	26.63	1	13.31	Mixer	1	1	56.45	1.00	56.45		
	(1:3)		W/Comont	20%			1.24	Mixer	1	0.05	62 12	1	2 1 1								
			w/Cement	2 10			1.34	operator Forman	1	0.05	88.85	1	3.11 Д ДД								
			Wa.san	1%			0.23	i of man	1	0.05	00.05	1	4.44								
							92.00						23.08						58.05	173.13	207.75
														-							

2	Pointing in cement	m ²	mortar	m ³	0.019	173.13	3.29	Forman	1	0.10	88.85	2.00	4.44	Tools	2.00	1	0.16	2	0.16		
	sand (1:3) to							Plasterer D. Labor	1	1.00	88.75	2.00	44.38								
	masoni y wan						3.29	D. Labor	2	1.00	20.05	2.00	75.44						0.16	78.89	94.67
3	Three Coates plastering		Mortar	m ³	0.022	173.13	3.81	Forman	1	0.10	88.85	0.9	9.87	Tools	2	1	0.16	0.9	0.36		
	in cement mortar		W/ Mortar	10%			0.38	Plasterer	1	1.00	88.75	0.9	98.61 50.17								
	(1.3)						4 19	D. 18001	2	1.00	20.05	0.9	167.65						0.36	172 20	206.63
							4.17						107.05						0.50	172.20	200.05
4	Two coats plastering	m ²	Mortar	m ³	0.02	173.13	3.12	Forman	1	0.10	88.85	0.98	9.07	Tools	2	1	0.16	0.98	0.33		
	. 0		W/Mortar	10%			0.03	plasterer-	1	1.00	88.75	0.98	90.56								
								D. labor	2	1.00	26.63	0.98	54.34								
							3.15						153.96						0.33	157.44	188.93
	Type line																				
5	rendered	m ²	Mortar	m ³	0.010	4408.3	44.08	Forman	1	0.20	88.85	0.77	23.08	Tools	2	1	0.16	0.98	0.33		
	Coat		W/ Mortar	10%			0.44	plasterer-	1	1.00	88.75	0.77	115.26								
								D. labor	2	1.00	26.63	0.77	69.16								
							44.52						207.49						0.33	252.34	302.81
6	Cement mortal/ screed		Cement	Qnt	0.17	569.25	96.77	Masion-1	1	0.05	44.38	1	2.22	Tools	10	1	0.16	1.00	1.60		
		m ²	W/Cement	2%			1.94	D. Labor	10	0.05	26.63	1	13.31	Mixer	1	1	61.24	1.00	61.24		
								Mix. operator	1	0.05	62.13	1	3.11								
								Forman	1	0.05	88.85	1	4.44	_							
							98.71						23.08						62.84	184.63	221.55
7	compound fence		C-20 concrete	m3	0.01	3656.78	36.57	Forman	1	0.05	88.85	1	4.44	Tools	10	1	0.16	1.00	1.60		
	with barbed	m ²	Re-Bar	kg	0.264	69.00	18.22	D. Labor	10	0.05	26.63	1	13.31								
	wire		barbed	m	2	30.00	60.00	Masion-1	1	0.05	44.38	1	2.22								
			WIIC				114.7						19.97						1.60	136.36	163.63
														-							

8	Pre-cast concrete	m2	C-20 Conc.	m ²	1.00	73.14	73.14	Forman	1	0.10	88.85	1.5	5.92	Tools	2	1	0.16	1.00	0.32		
	Pavement		Red ash	m ³	0.1	40.25	4.03	Mason-2	1	1.00	88.75	1.5	59.17								
			Mortar	m ³	0.015	3673.65	55.10	D. labor	2	1.00	26.63	1.5	35.50	_							
							132.2						100.59						0.32	233.18	279.81
9	Pre-cast concrete Dia. 400mm	m2	pipe	m ²	1.10	105.62	116.1 8	Forman	1	0.10	88.85	1.50	5.92	Tools	2	1	0.16	1.00	0.32		
	pipe		Red ash	m ³	0.01	40.25	0.40	Mason-2	1	1.00	88.75	1.50	59.17								
			Mortar	m ³	0.01	3673.65	36.74	D. labor	2	1.00	26.63	1.50	35.50								
							153.3 2						100.59						0.32	254.23	305.08
11	Thurse Constant		noint	Cal	0.10	020.00	02.00	Econoco	1	0.20	00 05	2.00	5.02	Taala	2	1	0.16	2.50	0.12		
	plastic	1112	pann	Gai	0.10	920.00	92.00	Politian	1	1.00	00.05	3.00	3.92	10018	2	1	0.10	2.50	0.15		
	emulsion							D. laborer	2	1.00	26.63	3.00	17.75								
	paint						02.00	painter	1	1.00	88.75	3.00	29.58						0.12	145 20	174.46
							92.00						55.20						0.15	145.58	174.40
12	Roof cover in	m ²	G-28 GIS	m ²	1.10	92.00	101.2	carpl-2	1	1.00	88.75	2.50	35.50	Tools	3	1	0.16	2.50	0.19		
	galvanized		Nail	Kg	0.15	115.00	17.25	carp-1	1	1.00	44.38	2.50	17.75								
	Corrugated		Ridge cap	ml	0.15	57.50	8.63	D-Labor	2	1.00	26.63	2.50	21.30								
	iron sheet		8F					Car form	1	0.20	88.85	2 50	7 11								
							127.0		1	0.20	00.05	2.50	81.66						0.19	208.93	250.71
13	G28 galvanized		metal	ml	1.05	107.00	112.3	carp-1	1	1.00	44.38	0.8	55.47	Tools	3	1	0.16	4.0	0.12		
	sheet metal copping	ml	antirust	gallo n	0.012	690.00	8.28	painter	1	1.00	88.75	0.8	110.94								
			Synthetic	gallo n	0.036	920.00	33.12	D. laborer	2	1.00	26.63	0.8	33.28								
							153.7						199.69						0.12	353.55	424.27

CA	REPENTERY	Y & J	OINER																		
1	Dia.= 10 -12 cm Eucalyptus Truss wood	ml	Eucalyptu s Truss wood Nail	ml Kg	1.15 0.15	28.75 115.00	33.06 17.25	carp-2 carp-1	1	1.00 1.00	88.75 44.38	20 20	4.44 2.22	Tools	3	1	0.16	8	0.06		
			Iron Band	Kg	0.10	69.00	6.90	D- Labor	2	1.00	26.63	20	2.66								
								Forman	1	0.20	88.85	20	0.89								
							57.21						10.21						0.06	67.48	80.98
2	Dia.= 8-10 cm	ml	Eucalyptu s Truss wood	ml	1.15	14.38	16.53	carpl-2	1	1.00	88.75	20	4.44	Tools	3	1	0.16	8	0.06		
	Eucalyptus Truss wood		Nail	Kg	0.15	115.00	17.25	carp-1	1	1.00	44.38	20	2.22								
			Band	Kg	0.10	69.00	6.90	D- Labor	2	1.00	26.63	20	2.66								
								Forman	1	0.20	88.85	20	0.89								
							40.68						10.21						0.06	50.95	61.14
3	5x7 CM Purling 'Zigha' tree	ml	purling	ml	1.10	57.50	63.25	carpl-2	1	1.00	88.75	5	17.75	Tools	2	1	0.16	5	0.06		
	wood		Nail	Kg	0.10	115.00	11.50	carp-1	1	1.00	44.38	5	8.88								
								D- Labor	2	1.00	26.63	5	10.65								
							_	Forman	1	0.10	88.85	5	1.78							_	136.6
							74.75						39.05						0.06	113.87	4
M	ETAL AND S	TEEI	L WORK			(500.0															
1	Metal Door	set	Door set	set	1.00	6500.0 0	6,500.00	Carpenter .I	1	1.00	44.38	0.75	59.17	Tools	3	1	0.16	0.75	0.64		
	- size 3.2x 2.8 m		Lock	pcs	0.50	517.50	258.75	Carpenter .II	1	1.00	88.75	0.75	118.3 3								
			Syntactic	m^2	0.25	920.00	230.00	Chiseler	1	0.25	44.38	0.75	14.79								
								Plasterer	1	0.25	88.75	0.75	29.58								
								Forman	1	0.63	88.85	0.75	74.63								
							6 000 75	D. Labor	2	1.00	26.63	0.75	71.00						0.64	7256.0	0 0 0 0 0
							0,988.75						- 507.5						0.04	7530.9	0,020.2

'Awavo Keraro	Kebele'	Water	Supply	Project	Detailed	Design Report

2	Metal Door /Type W1/	set	Door set	set	1.00	2875.0	2,875.00	Carpenter .I	1	1.00	44.38	0.75	59.17	Tools	3	1	0.16	0.75	0.64		
	Type D1 - size $2 1 \times 0.9$ m		Lock	pcs	0.50	517.50	258.75	Carpenter II	1	1.00	88.75	0.75	118.3								
	2.1X0.9 m		Syntactic	m ²	0.25	920.00	230.00	Chiseler	1	0.25	44.38	0.75	14.79								
								Plasterer	1	0.25	88.75	0.75	29.58								
								Forman	1	0.63	88.85	0.75	74.63								
								D. Labor	2	1.00	26.63	0.75	71.00								
							3,363.75						367.5						0.64	3731.9	4,478.2
3	Metal Door	set	Door set	set	1.00	2950.0	2,950.00	Carpenter I	1	1.00	44.38	0.75	59.17	Tools	3	1	0.16	0.75	0.64		
	Type D1 - size		Lock	pcs	0.50	517.50	258.75	Carpenter II	1	1.00	88.75	0.75	118.3								
	2.8x0.8 m		Syntactic	m ²	0.25	920.00	230.00	Chiseler	1	0.25	44 38	0.75	3 14 79								
			Syntaette	m	0.25	720.00	230.00	Plasterer	1	0.25	88 75	0.75	29.58								
								Forman	1	0.23	88.85	0.75	29.58 74.63								
								D. Labor	2	1.00	26.63	0.75	71.00								
							3,438.75						367.5						0.64	3806.9	4,568.28
4	Metal Door /Type W2/	set	Door set	set	1.00	5175.0 0	5,175.00	Carpenter I	1	1.00	44.38	0.75	59.17	Tools	3	1	0.16	0.75	0.64		
	Type D1 - size		Lock	pcs	0.50	517.50	258.75	Carpenter II	1	1.00	88.75	0.75	118.3								
	2.1mx2 m		Syntactic	m ²	0.25	920.00	230.00	Chiseler	1	0.25	44 38	0.75	5 14 79								
			Syntaette		0.25	720.00	230.00	Plasterer	1	0.25	88.75	0.75	29.58								
								Forman	1	0.63	88.85	0.75	74.63								
								D. Labor	2	1.00	26.63	0.75	71.00								
							5,663.75						367.5						0.64	6031.9	7,238.28
5	Metal Door /Type W3/	set	Door set	set	1.00	5410.0	5,410.00	Carpenter I	1	1.00	44.38	0.75	59.17	Tools	3	1	0.16	0.75	0.64		
	size 1.35mx		Lock	pcs	0.50	517.50	258.75	Carpenter II	1	1.00	88.75	0.75	118.3								
	2.8 m		Syntactic	m ²	0.25	920.00	230.00	Chiseler	1	0.25	44.38	0.75	14.79								
			5					Plasterer	1	0.25	88.75	0.75	29.58								
								Forman	1	0.63	88.85	0.75	74.63								
								D. Labor	2	1.00	26.63	0.75	71.00								
							5,898.75						367.5						0.64	6266.9	7,520.28

Г

6	Metal Door /Type W3/	set	Door set	set	1.00	2300.0	2,300.00	Carpenter I	1	1.00	44.38	0.75	59.17	Tools	3	1	0.16	0.75	0.64		
	Type D1 - size 1.75mx0.75 m		Lock	pcs	0.50	517.50	258.75	Carpenter II	1	1.00	88.75	0.75	118.3								
	1		Syntactic	m^2	0.25	920.00	230.00	Chiseler	1	0.25	44.38	0.75	14.79								
								Plasterer	1	0.25	88.75	0.75	29.58								
								Forman	1	0.63	88.85	0.75	74.63								
								D. Labor	2	1.00	26.63	0.75	71.00								
							2,788.75						367.5						0.64	3156.9	3,788.28
								•						•							
7	Metal Door	set	Door set	set	1.00	2100.0	2,100.00	Carpenter I	1	1.00	44.38	0.75	59.17	Tools	3	1	0.16	0.75	0.64		
	Type D1 - size 1.55mx0.7 m		Lock	pcs	0.50	517.50	258.75	Carpenter II	1	1.00	88.75	0.75	118.3 3								
			Syntactic	m ²	0.25	920.00	230.00	Chiseler	1	0.25	44.38	0.75	14.79								
			-					Plasterer	1	0.25	88.75	0.75	29.58								
								Forman	1	0.63	88.85	0.75	74.63								
								D. Labor	2	1.00	26.63	0.75	71.00								
							2,588.75						367.5						0.64	2956.9	3,548.28
8	Window (Trung W1/		Window	set	1.00	1150.0	1,150.00	Carpenter I	1	1.00	44.38	0.75	59.17	Tools	3	1	0.16	0.75	0.64		
	size		6	2	0.10	000 00	02.00	с , н	1	1.00	00.75	0.75	118.3								
	1.2mx0.9m		Syntactic	m²	0.10	920.00	92.00	Carpenter II	1	1.00	88.75	0.75	3								
								Chiseler	1	0.25	44.38	0.75	14.79								
								Plasterer	1	0.25	88.75	0.75	29.58								
								Forman	1	0.20	88.85	0.75	23.69								
								D. Labor	2	1.00	26.63	0.75	71.00								
							1,242.00						316.5						0.64	1559.2	1,871.05
9	Window /Type W2/		Window	set	1.00	1380.0	1,380.00	Carpenter .I	1	1.00	44.38	0.75	59.17	Tools	3	1	0.16	0.75	0.64		
	size		Syntactic	m ²	0.15	920.00	138.00	Carpenter II	1	1.00	88.75	0.75	118.3								
	1.2111X1.2111							Chiseler	1	0.25	44.38	0.75	14.79								
								Plasterer	1	0.25	88 75	0.75	29.58								
								Forman	1	0.20	88.85	0.75	23.69								
								D. Labor	2	1.00	26.63	0.75	71.00								
							1 518 00	2. Eucor	-	1.00	20.05	0.75	316.5						0.64	1835.2	2,202.25
							1,510.00						510.5						0.04	1055.2	

Г

size 0.4mx0.8m Syntactic m ² 0.10 920.00 92.00 Carpenter II 1 1.00 88.75 0.75 118.3 3 u 0.4mx0.8m Syntactic m ² 0.10 920.00 92.00 Carpenter II 1 0.00 88.75 0.75 14.79 Plasterer 1 0.25 88.75 0.75 29.58 23.69 23.69 23.69 23.69 23.69 23.69 23.69 316.5 0.75 316.5 0.75 0.64 869.21 2 2 1.00 26.63 0.75 71.00 316.5 0.64 869.21 2 2 1.00 26.63 0.75 59.17 Tools 3 1 0.16 0.75 0.64 869.21 2 3 3 1 0.16 0.75 0.64 4.38 0.75 59.17 Tools 3 1 0.16 0.75 0.64 4.38 0.75 14.79 44.38 0.75 14.79 44.38 0.75 14.79 44.38 0.75 14.79 44.38 0.75 14.79	
Chiseler 1 0.25 44.38 0.75 14.79 Plasterer 1 0.25 88.75 0.75 29.58 Forman 1 0.20 88.85 0.75 23.69 D. Labor 2 1.00 26.3 0.75 71.00 316.5 1.2mx1.2m Window set 1.00 805.00 805.00 Carpenter I 1 1 1.00 44.38 0.75 59.17 Tools 3 1 0.16 0.75 0.64 Carpenter I 1 1.00 88.75 0.75 118.3 Carpenter I 1 0.25 88.75 0.75 118.3 Carpenter I 1 0.25 88.75 0.75 118.3 Plasterer 1 0.25 88.75 0.75 29.58 Forman 1 0.20 88.85 0.75 29.58 Forman 1 0.20 88.85 0.75 29.58	
II Window/Type LP2/ size 1.2mx1.2m Window set 1.00 805.00 805.00 Carpenter .I 1 1.00 84.38 0.75 29.58 23.69 0.16 0.64 869.21 1 11 Window/Type LP2/ size Window set 1.00 805.00 805.00 Carpenter .I 1 1.00 44.38 0.75 59.17 Tools 3 1 0.16 0.75 0.64 869.21 1 11 LP2/ size Syntactic m ² 0.15 920.00 138.00 Carpenter .I 1 1.00 84.38 0.75 59.17 Tools 3 1 0.16 0.75 0.64	1
11 Window/Type LP2/ size 1.2mx1.2m Window set 1.00 805.00 805.00 Carpenter I. I.I. 1 1.00 44.38 0.75 59.17 Tools 3 1 0.16 0.75 0.64 869.21 1 1 1.00 88.75 0.75 59.17 Tools 3 1 0.16 0.75 0.64 869.21 1 1 1.00 1 1.00 88.75 0.75 59.17 Tools 3 1 0.16 0.75 0.64 869.21 1 1 1.00 88.75 0.75 59.17 Tools 3 1 0.16 0.75 0.64 869.21 1 1 1.00 88.75 0.75 118.3 1 0.16 0.75 0.64 869.21 1 1 1.00 88.75 0.75 118.3 1 1.01 1 1.00 88.75 1.075 29.58 1 1 1.02 88.85 0.75 23.69 1 1 1 1.00 26.63 0.75 23.69 1 1 1 1.00 26.63 </th <th></th>	
11 Window/Type LP2/ size 1.2mx1.2m Window set 1.00 805.00 S05.00 Carpenter II 1 1.00 44.38 0.75 59.17 Tools 3 1 0.16 0.75 0.64 869.21 1 11 Window/Type LP2/ size 1.2mx1.2m Window set 1.00 805.00 Carpenter II 1 1.00 44.38 0.75 59.17 Tools 3 1 0.16 0.75 0.64	
11 Window/Type LP2/ size 1.2mx1.2m Window set 1.00 805.00 Carpenter .I 1 1.00 44.38 0.75 59.17 Tools 3 1 0.16 0.75 0.64 869.21 1 12 Kindow/Type LP2/ size Syntactic m ² 0.15 920.00 138.00 Carpenter .II 1 1.00 88.75 0.75 118.3 1 0.16 0.75 0.64 -	
Window/Type Window set 1.00 805.00 Carpenter .I 1 1.00 44.38 0.75 59.17 Tools 3 1 0.16 0.75 0.64 LP2/ size Syntactic m ² 0.15 920.00 138.00 Carpenter .II 1 1.00 88.75 0.75 118.3 L2mx1.2m Syntactic m ² 0.15 920.00 138.00 Carpenter .II 1 0.00 88.75 0.75 118.3 Dissip Forman 1 0.25 44.38 0.75 14.79 End	043.05
Window/Type Window set 1.00 805.00 Carpenter .I 1 1.00 44.38 0.75 59.17 Tools 3 1 0.16 0.75 0.64 LP2/ size Syntactic m ² 0.15 920.00 138.00 Carpenter .II 1 1.00 88.75 0.75 118.3 Chiseler 1 0.25 44.38 0.75 29.58 Forman 1 0.20 88.85 0.75 23.69 D. Labor 2 1.00 26.63 0.75 71.00	
size Syntactic m ² 0.15 920.00 138.00 Carpenter .II 1 1.00 88.75 0.75 118.3 Chiseler 1 0.25 44.38 0.75 14.79 Plasterer 1 0.25 88.75 0.75 29.58 Forman 1 0.20 88.85 0.75 23.69 D. Labor 2 1.00 26.63 0.75 71.00	
Chiseler10.2544.380.7514.79Plasterer10.2588.750.7529.58Forman10.2088.850.7523.69D. Labor21.0026.630.7571.00	
Plasterer10.2588.750.7529.58Forman10.2088.850.7523.69D. Labor21.0026.630.7571.00	
Forman10.2088.850.7523.69D. Labor21.0026.630.7571.00	
D. Labor 2 1.00 26.63 0.75 71.00	
943.00 <u>316.5</u> <u>0.64 1260.2</u>	512.25
¹² Ladder set Ladder set $1.00 \frac{1725.0}{0}$ 1,725.00 Carpenter I 1 1.00 44.38 0.75 59.17 Tools 3 1 0.16 0.75 0.64	
Length 3m $\phi 10mm$ pcs 8.00 40.25 322.00 Carpenter II 1 1.00 88.75 0.75 118.3	
Syntactic m^2 0.25 920.00 230.00 Chiseler 1 0.25 44.38 0.75 14.79	
Plasterer 1 0.25 88.75 0.75 29.58	
Forman 1 0.63 88.85 0.75 74.63	
D. Labor 2 1.00 26.63 0.75 71.00	
2,277.00 367.5 0.64 2645.1 <mark>3</mark>	174.18
¹³ compound barbed ml 1.05 2.3 2.42 Forman 1 0.10 88.75 20.00 0.44 Tools 3 1 0.16 0.75 0.64	
with barbed ml Mason-2 1 1.00 88.75 20.00 4.44	
D. labor 2 1.00 26.63 20.00 2.66	
2.42 7.54 0.64 10.60	

ANNEXURE-II STRUCTURAL DESIGN DOCUMENT

Client: Czech Development Agency..... 100M³ RC CIRCULAR WATER TANK REST ON GROUND **DESIGN DOCUMENT CLAUSE CONTENTS** 1 PRELIMINARY DATA

- 1.1 DIMENSIONS OF THE TANK
- 1.2 MATERIAL PROPERTY
- 1.3 LOAD COMBINATION
- 1.4 SAFE BEARING CAPACITY OF SOIL
- 2 STRUCTURAL ANALYSIS OF CIRCULAR WALL
- 2.1 **MANUEL METHOD**
- 2.1.1 MAXIMUM SHEAR FORCE AT BASE
- 2.1.2 MAXIMUM BENDING MOMENT AT BASE
- 2.1.3 MAXIMUM RING TENSION AT MIDDLE
- 2.2 **FINITE ELEMENT METHOD**
- 2.2 A **CIRCULAR WALL**
- 2.2.1 MAXIMUM SHEAR FORCE AT BASE
- 2.2.2 MAXIMUM BENDING MOMENT AT BASE
- 2.2.3 MAXIMUM RING TENSION AT MIDDLE
- 2.2 B **TOP SLAB**
- 2.2.1 MAXIMUM SHEAR FORCE
- 2.2.2 MAXIMUM BENDING MOMENT
- 2.2 C **BASE SLAB**
- 2.2.1 MAXIMUM SHEAR FORCE
- 2.2.2 MAXIMUM BENDING MOMENT
- 3A **DESIGN OF CIRCULAR WALL FOR CRACK**
- 3.1 PRELIMINARY DATA

37	CRACK WIDTH CALCULATION FOR LOADING STAGE - FLEXURE &
5.2	RING TENSION
3 2 A	CRACK WIDTH CALCULATION FOR LOADING STAGE - FLEXURE
5.21	ONLY
3.2.1	MINIMUM STEEL FOR LOADING-FLEXURE
3.2.2	MAXIMUM CRACK SPACING & ACTUAL CRACK WIDTH
3 7 B	CRACK WIDTH CALCULATION FOR LOADING STAGE - RING TENSION
J.2 D	ONLY
3.2.1	MINIMUM STEEL FOR LOADING-DIRECT TENSION
3.2.2	MAXIMUM CRACK SPACING & ACTUAL CRACK WIDTH
3B	DESIGN OF CIRCULAR WALL FOR LOADING
3.1	DESIGN FOR VERTICAL BENDING AT FIXED BASE
3.2	DESIGN FOR SHEAR AT BASE
3.3	DESIGN FOR RING TENSION AT MIDDLE
4	DESIGN OF TOP SLAB
4.1	PRELIMINARY DATA
4.2	DESIGN FOR BENDING
4.3	DESIGN FOR SHEAR
4.4	CHECK FOR DEFLECTION
5	DESIGN OF BASE SLAB
5.1	PRELIMINARY DATA
5.2	CRACK WIDTH CALCULATION FOR LOADING STAGE - FLEXURE
5.2.1	MINIMUM STEEL FOR LOADING-FLEXURE
5.2.2	MAXIMUM CRACK SPACING & ACTUAL CRACK WIDTH
5.3	DESIGN FOR BENDING
5.4	DESIGN FOR SHEAR
6	CHECK FOR BASE PRESSURE

Client: Czech Development Agency.....

1 PRELIMINARY DATA

1.1 **Dimensions of the tank**

Capacity of the tank	$C = 100 m^3$
Height of the water tank	H" = 2.5 m
Clear	
board	$n^{*} = 0.2 m$
Total height of the water tank	H = 2.7 m
Internal diameter of the tank	$D_{req} = \sqrt{\{100/[2.5x(3.14/4)]\}}$
	= 7.14 m
Provided diameter of tank	$D_{pro} = 7.2 \text{ m}$
Provided volume of tank	$C_{pro} = 101.7 m^3$
	> 100 m^3
	Hence ok!

1.2 Material Property

Grade of Concrete		=	C30	
Grade of Steel		=	S400	
Cylin.Com. strength of concrete	$f_{ck} \\$	=	24	N/mm ²
Ten. Strength of steel	$f_{yk} \\$	=	400	N/mm ²
Design strength of concrete	\mathbf{f}_{cd}	=	0.85 x	f _{ck} /γ _c
		=	0.85	5 x 24 / 1.5

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report Client: Czech Development Agency.....

			= 13.6 N/mm ²
	Design strength of steel reinforcement. f	yd	$= f_{yk} / \gamma_s$
			= 400 / 1.15
			$= 347.8 \text{ N/mm}^2$
1.3	Load Combination		
	Ultimate limit state		
	Partial safety factor for dead load		= 1.35
	Partial safety factor for Water pressure		= 1.2
	Load Combination		= 1.35DL+1.2WP
	Serviceability limit state		
	Partial safety factor for dead load		= 1.0
	Partial safety factor for Water pressure		= 1.0
	Load Combination		= 1DL+1WP
1.4	Base Pressure		
	Unit weight of water		= 10 kN/m ³
	Height of water including free board		= 2.7 m
	Water pressure at base		= 27 kN/m ²
1.5	Safe bearing capacity of soil		
	Considered safe bearing capacity of		
	soil		$= 100 \text{ kN/m}^2$
	Allowable deflection		= 0.01 m
	Modulus of sub grade reaction		= 100/0.01
			$= 10000 \text{ kN/m}^2/\text{m}$

STRUCTURAL ANALYSIS OF CIRCULAR WALL 2

2.1	MANUEL METHOD				
	Height of the water tank	Н	=	2.7	m
	Internal diameter	D	=	7.2	m
	Wall thickness	t	=	210	mm
	Parameter	h²/Dt	=	2.7^2/[[7.2x(210/1000)]
			=	4.83	
	Base pressure	qh	=	27	kN/m ²
2.1.1	Maximum shear force at base				
	Со	efficient	=	0.217	
	Maximum shear force at SLS		=	0.2169	1 x 27 x 2.7
			=	15.82	kN
	Maximum shear force at ULS [$\Upsilon_F=1.2$]		=	1.2x15	.82
			=	18.98	kN
2.1.2	Maximum Bending moment at base				
	Со	efficient	=	0.023	
	Maximum bending moment at		=	0.0229	82 x 27 x 2.7^2
			=	4.53	kN-m
	Maximum bending moment at ULS $[\Upsilon_{F^2}]$	=1.2]	=	1.2x4.5	53
			=	5.436	kN-m
2.1.3	Maximum Ring tension at middle				
	Со	efficient	=	0.469	
	Maximum ring tension at SLS		=	0.4688	4 x 27 x 3.6
			=	45.58	kN
	Maximum ring tension at ULS [Y _F =1.2]		=	1.2x45	.58
			=	54.7	kN

Client: Czech Development Agency.....

2.2 FINITE ELEMENT METHOD

2.2 A

CIRCULAR WALL

2.2.1 Maximum shear force at base

Maximum shear force at SLS	=	61.8	kN/m ²
Maximum shear force at SLS	=	12.98	kN
Maximum shear force at ULS [$\Upsilon_F=1.2$]	=	1.2x12	.978
	=	15.57	kN

3A DESIGN OF CIRCULAR WALL FOR CRACK

3.1 **Preliminary data**

Grade of Concrete		=	C30	
Grade of Steel		=	S400	
Cylin.Com. strength of concrete	$f_{ck} \\$	=	24	N/mm ²

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report Client: Czech Development Agency.....

Tensile Strength of steel	f _{yk}	=	400	N/mm ²
Design strength of concrete	\mathbf{f}_{cd}	=	0.85 x f _{ck} /y	c
		=	0.85 x 24 /	1.5
		=	13.6	N/mm ²
Design strength of steel rein.	\mathbf{f}_{yd}	=	f_{yk} / γ_s	
		=	400 / 1.15	
		=	347.8	N/mm ²
Consider 1m Width of wall	b	=	1000	mm
Overall thickness of wall provided	h _{pro}	=	210	mm
Assume clear cover	c	=	40	mm
Effective thickness of wall provided	d _{pro}	=	166	mm
Height of the tank	Н	=	2.7	m
Hydraulic head	ho	=	2.7	m
For flexure				
Diameter of bar for bending	φ	=	8	mm
Provided spacing of bar	S	=	115	mm
For Pure tension				
Diameter of bar for pure tension	φ	=	10	mm
Provided spacing of bar	S	=	80	mm
CRACK WIDTH CALCULATION FOR L	OADIN	G ST	AGE - FLEX	KURE &
RING TENSION				
MATERIAL PROPERTY				
Secant modulus of elasticity of concrete				
	E_{cm}	=	22[0.8+0.11	$f_{ck}]^{0.3}$

22x[0.8+(0.1x24)]^0.3

		=	31.19	Gpa
Assume creep coefficient	ф	=	1.5	
Long term	Ec	=	$E_{cm}/(1+\phi)$	

3.2

			31.19/(1+1.5	5)
		=	12.48	GPa
Modulus of elasticity of steel	Es	=	200	GPa
	α_{e}	=	Es/Ec	
		=	200/12.476	
		=	16.03	

H VENGINEERING PLC

9 .TM

6

3.2.A CRACK WIDTH CALCULATION FOR LOADING STAGE - FLEXURE ONLY

3.2.1 MINIMUM STEEL FOR LOADING-

FLEXURE

	$A_{s,min}$	=	K _c Kf _{ct,ef}	$_{\rm f}A_{\rm ct}/f_{\rm yk}$
	Κ	=	1.00	for h
	K	=	0.65	for h
Interpolate the value of k.	Κ	=	1	
	Act	=	b x h	
		=	2E+05	mm^2
For flexure	Kc	=	0.5	
	$f_{\rm ct, eff}$	=	f_{ctm}	
		=	0.3fck ^{0.6}	7
		=	2.53	Mpa
	$A_{s,min}$	=	664.1	mm ²
Min. area of steel required for two face	As,req,2	=	664.1	mm2
Min. area of steel required for one face	As,req,1	=	332.1	mm2
Required spacing of bar	Sreq	=	151.3	mm
Area of steel provided for one face	A _{s,pro}	=	436.9	mm2
	A _{s,pro}	>	A _{s,req,1}	

Hence provided steel is sufficient to resist crack due to bending

3.2.2 MAXIMUM CRACK SPACING & ACTUAL CRACK WIDTH

H VENGINEERING PLC 'Awayo Keraro Kebele' Water Supply Project Detailed Design Report 6 Client: Czech Development Agency..... 3.2.2.1 Calculation of concrete & steel stresses

0.0

Maximum ring tension occour at mid height at SLS							
	Т	=	300	kN/m			
Stresses in tension reinforcement by assuming cracked section							
All the tension is resisted by steel							
Stres in the tension steel	σ_{s}	=	T/A _s				
		=	300x10	^3/(2x981.25)			
Stres in the concrete	$\sigma_{\rm s}$	=	152.9	MPa			
	hc,eff	=	min[2.5	5(h-d); 0.5h]			
		=	105	mm			
Effective area of concrete surrounding the reir	nforcement						
Effective tension area of concrete	$A_{c,eff}$	=	$h_{c,eff} b$				
		=	1E+05	mm ²			
Effective reinforcement ratio	$\rho_{p,eff}$	=	As/Ac,ef	ff			
		=	0.01				
	$f_{\rm ct,eff}$	=	f_{ctm}				
		=	0.3fck ^{0.}	67			
		=	2.523	Mpa			
For long term loading	Kt	=	0.4				

3.2.2.2Calculation of mean strain in reinforcement - mean strain in concrete [EN-1992-1-1: 7.3.4] [\sigmas-Kt (fct,eff/pp,eff)(1+ae pp,eff)]/Es >0.6 os/Es esm-ecm =

0.000179 < 0.000458599 = 0.0004586 esm-ecm =

3.2.2.3 Calculation of maximum crack spacing

H VENGINEERING PLC. 'Awayo Keraro Kebele' Water Supply Project Detailed Design Report 6 THENT OF CONSULTANCY Client: Czech Development Agency..... [EN-1992-1-1: 7.11]

Maximum crack spacing,	Sr,max =	k3c+k1k2k4\pp,eff
For high bond bars	k1 =	0.8
For pure tension	k2 =	1
	k3 =	3.4
	k4 =	0.425
	Sr,max =	(3.4x40)+(0.8x1x0.425x10/0.01)
	=	476mm

3.2.2.4 Calculation of actual crack width

[EN-1992-1-1: 7.8]

Wk,act = Sr,max x (ɛsm-ɛcm) 476x0.0004586 = 0.2182936mm =

0 .TM

3.2.2.5 Calculation of permissible crack width

[EN-1992-3-7.3.1]

Tightness class	=	Choose tightness class 1

Permissible crack width

Wk,per=	0.22mm
>	Wk,act

This is an acceptable crack width, Satisfied

CONCLUSION: Minimum requirements as per code - each face & each direction

<i>For flexure</i>		
Actual crack width	=	0.049232mm
Diameter of bar	=	8mm
Spacing of bar	=	115mm
For pure tension		
Actual crack width	=	0.2182936mm

Client: Czech Development Agency.....

Diameter of bar=10mmSpacing of bar=80mm

3B DESIGN OF CIRCULAR WALL FOR LOADING

3.1 DESIGNS FOR VERTICAL BENDING AT FIXED BASE

3.1.1 Calculation of reinforcement to resist bending causing tension

Moment at base at serviceability limit state

Μ	=	4	kNm/m
		-	

Maximum bending moment causing tension on inner face at base at ULS [Yf=1.2]:

	Μ	=	4.8 kNm/m
	k	=	M/bd2fck <0.167
		=	0.00726
Calculation of lever arm	Z/d	=	$0.5[1+\sqrt{(1-3k/\eta)}]$
		=	$0.5 \ge [1 + \sqrt{(1 - (3 \times 0.00726/1))]}$
		=	0.995

Total reinforcement required to resist cantilever bending

	As	=	M/[0.8	87fykz]	
		=	4.8x10)^6/(0.8	7x400x0.995x166)
		=	83.508	852726	mm2
Area of steel for bending	As,rec	q =	83.508	852726	mm2
Spacing of bars for bending	Sreq	=	601.61	15208	mm
Minimum spacing of bar for	crack c	ontrol	=	115	mm
Required spacing of bar			=	115	mm
Provided spacing of bar			=	120	mm
	H	Ience sa	ıfe !		
Provided area of steel		As,pro) =	418.67	′ mm2

3.1.2 Check the effective thickness of wall to resist bending causing compression

Required effective thickness of slab to resist bending

dreq =
$$\sqrt{(M/0.196bfck)}$$

= $\sqrt{[4.8x10^{6}/(0.196x1000x24)]}$

31.94382825 mm = <

dpro

Hence provided wall thickness is sufficient to resist compression due to bending !

3.2 **DESIGN FOR SHEAR AT BASE**

3.2.1 Check the adequacy of the thickness to resist shear

Maximum shear force at base at SLS

V = 12.978 kN

Maximum shear force at base at ULS [$\Upsilon f=1.2$]:

VE	D =	15.5	736 kN	
Lever arm, approximately	,	Z	=	0.98d
			=	162.68 mm

$$v1 = 0.6(1-fck/250)$$

= 0.5424

1

For non-pre-stressed structures

αcw =

=

Conservatively assume $\cot \Theta = 1$

Crushing strength of the concrete diagonal strut

[EN-1992-1-1: (6.9)]

VRD,max	=	$0.9d \alpha cwb^{v}1fcd/(cot\Theta+tan\Theta)$		
	=	551.035008	kN	
	>	VED		

Hence the provided thickness is sufficient to resist compression due to shear!

3.2.2 Check whether shear reinforcement can be avoided

$$[EN-1992-1-1: 6.2.2 (1)]$$

$$CRd,c = 0.18/yc$$

$$= 0.18/1.5$$

$$= 0.12$$

$$k = 1+\sqrt{(200/d)} \le 2.0$$

$$= 1+\sqrt{(200/166)}$$

2.0976426 2 = > 2 = 100 Asl/bd ≤ 2 $100\rho l =$ $100x418.67/(1000x166) \leq 2$ = 0.252210843 ≤ 2 = 0.26 = 0.035K1.5√fck [EN-1992-1-1: 6.3N] $V \min =$ $0.035 x 2^{1.5} x \sqrt{24}$ = 0.484974226 =

The shear capacity of the concrete without any shear reinforcement [EN-1992-1-1: 6.2a]

VRd,c =	CRd,cK[100pl fck]1/3bd \geq Vmin bd				
=	0.12x2	2x(0.26	5x24)^	(0.34)x1000x166/1000	
=	73.35	kN	<	80.50572154 kN	
=	73.35	kN			
VRd,c >	VRE				

Hence the provided depth is sufficient to resist tension due to shear without shear reinforcement

3.3 DESIGN FOR RING TENSION AT MIDDLE

Direct tension at ULS = 42.4116 kN

Total direct tension at ULS [Yf=1.2]

T =	=	1.2 x 42.4116
	=	50.89392kN

Total reinforcement required to resist direct tension

As	=	T/0.87x fy	
	=	50.89392x100	00/(0.87x400)
	=	146.2468966r	nm3/m
Area of steel for direct tension As, required,	, 2	= 146.24	68966mm2
For one face As, required,	1=	73.12344828	mm2
Spacing of bar for direct tension S	=	1073.527054	mm
Minimum spacing of bar for crack control		S min. =	80 mm
Required spacing of bar		S req. =	80 mm
Provided spacing of bar		S pro. =	80 mm
		>	S req.

	Hence satisfied!					
Provided area of steel	As, p	As, pro. =		5		
Minimum steel						
Minimum area of steel for each face & each	n direction =	0.2%	Ac			
	=	420	mm2			
Vertical bar above 0.2h from base -inner fat	ce					
Diameter of bar	=	8	mm			
Required spacing	=	119.6	190476	mm		
Provided spacing of bar	=	115	mm			
Vertical bar - outer face						
Diameter of bar	=	8	mm			
Required spacing	=	119.6	190476			
Provided spacing of bar	=	115	mm			
Horizontal bar up to 0.2h from base						
Diameter of bar	=	8	mm			
Required spacing	=	119.6	190476			

Provided spacing of bar	=	115	mm

4 DESIGN OF TOP SLAB

4.1 Preliminary data

4.2

Grade of Concrete		=	C30
Grade of Steel		=	S400
Cylin.Com. strength of concrete	fck	=	24 N/mm2
Tensile Strength of steel	fyk	=	400 N/mm2
Design strength of concrete	fcd	=	0.85 x fck/yc
		=	0.85 x 24 / 1.5
		=	13.6 N/mm2
Design strength of steel rein.	fyd	=	fyk / ys
		=	400 / 1.15
		=	347.826087 N/mm2
Consider 1m Width of slab	b	=	1000 mm
Overall thickness of slab provided	h pro	=	225 mm
Assume clear cover	c	=	25 mm
Effective thickness of slab provided	d pro	=	195 mm
DESIGN FOR BENDING			
BOTTOM REINFORCEMENT			[EN-1992-1-1: 9.2.1.1]
Diameter of bar for bending	φ	=	10 mm
Design bending moment at ULS			
	М	=	20.7 kNm/m
	k	=	M/bd2fck <0.167
		=	0.023
Calculation of lever arm	Z/d	=	$0.5[1+\sqrt{(1-3k/\eta)}]$
		=	$0.5 \ge [1 + \sqrt{(1 - (3 \ge 0.023/1))]}$
		=	0.983
Reinforcement required resisting ber	nding		
	As	=	M/[0.87fykz]

 $= 20.7 \times 10^{6} / (0.87 \times 400 \times 0.983 \times 195)$

Area of steel for bending		As	=	310.32	2 mm2
Minimum area of steel		As, m	in.	\geq	0.26 fctm / fyk b d \geq 0.0013 b
	fct, eff	f.=	fctm		[EN-1992-1-1: (9.1N)]
		=	0.3fck	0.67	
		=	2.522	683616	MPa
As, m	nin.	=	319.7	501484	> 253.5 mm2
Area of steel for required	A req.	=	319.7	501484	mm2
Spacing of bars required	S req.	=	245.50	041863	mm
Maximum spacing of bar	S max	. =	$3h \le 4$	00mm	[EN-1992-1-1: 9.3.1.1(3)]
		=	400	mm	
Provided spacing of bar		=	150	mm	
	Hence	safe!			
Provided area of steel	As, pr	0.	=	523.34	4 mm2
Check the effective thickness	ss of wal	l to resi	ist bend	ing caus	sing compression
Required effective thickness	s of slab	to resis	t bendir	ng	
	D req.	=	√(M/k	bfck	
		=	√[20.7	7x10^6/	(0.023x1000x24)]
		=	193.64	491673	mm

< D pro.

Hence provided wall thickness is sufficient to resist compression due to bending!

4.3 **DESIGNS FOR SHEAR**

d

Check the adequacy of the thickness to resist shear

Design shear force at base

	VED	=	15.525 kN
Lever arm, approximately	Z	=	0.98d
		=	191.1 mm
	v1	=	0.6(1-fck/250)

Hence the provided thickness is sufficient to resist compression due to shear

Check whether shear reinforcement can be avoided [EN-1992-1-1: 6.2.2 (1)]

CRd, c =
$$0.18/yc= 0.18/1.5$$

= 0.12
k = $1+\sqrt{(200/d)} \le 2.0$
= $1+\sqrt{(200/195)}$
= $2.012739367 > 2$
= 2
 $100\rho 1 = 100 \text{ Asl/bd} \le 2$
= $100x523.34/(1000x195) \le 2$
= $0.268379487 \le 2$
= $0.268379487 \le 2$
= 0.27
V min. = $0.035K1.5\sqrt{fck}$ [EN-1992-1-1: 6.3N]
= $0.035x2^{1.5x}\sqrt{(24)}$
= 0.484974226

The shear capacity of the concrete without any shear reinforcement [EN-1992-1-1: 6.2a]

VRd,c = $CRd,cK[100\rho l fck]1/3bd \ge V min. bd$

0.12x2x(0.27x24)^(0.34)x1000x195/1000
87.26 kN < 94.56997409 kN
87.26 kN
VRE
-

Hence the provided depth is sufficient to resist tension due to shear without shear reinforcement

4.4 CHECK FOR DEFLECTION

[EN-1992-1-1: (7.16a)]

Limiting span to depth ratio

$$L/d = K [11+1.5\sqrt{fck\rhoo/\rho+3.2\sqrt{fck(\rhoo/\rho-1)3/2}}]$$

For simply supported slab	K=	1	[EN-1992-1-1: 7.4N]
The reference reinforcement	nce reinforcement ratio po =		$0.1\sqrt{\text{fck}}$
		=	0.489897949

Required tension reinforcement ratio at mid span

	ρ	=	0.160	
Basic	L/d, li	mit	=	79.92
Modif	ied L/d,	limit	=	79.92x523.34/310.32
			=	134.7812993

Actual span to depth ratio L/d, actual =	36.92307692
<	L/d. limit

Hence the provided depth is sufficient to resist deflection

Preliminary data					
Grade of Concrete		=	C30		
Grade of Steel		=	S400		
Cylin.Com. strength of concrete	fck	=	24	N/mm2	2
Tensile Strength of steel	fyk	=	400	N/mm2	2
Design strength of concrete	fcd	=	0.85 x	fck/yc	
		=	0.85 x	24 / 1.5	í
		=	13.6	N/mm2	2
Design strength of steel rein.	fyd	=	fyk / y	S	
		=	400 / 1	1.15	
		=	347.82	26087	N/mm2
Consider 1m Width of slab	b	=	1000	mm	
Overall thickness of slab provided	h pro	=	275	mm	
Assume clear cover	c	=	40	mm	
Effective thickness of slab provided	d pro	=	229	mm	
Height of the tank	Н	=	2.7	m	
Hydraulic head	ho	=	2.7	m	
n reinforcement					
Diameter of bar upward bending	ф	=	12	mm	
Provided spacing of bar	S	=	90	mm	
inforcement					
Diameter of bar for downward bendi	ng ø	=	10	mm	
provided spacing of bar	S	=	130	mm	
	Preliminary data Grade of Concrete Grade of Steel Cylin.Com. strength of concrete Tensile Strength of steel Design strength of concrete Design strength of steel rein. Consider 1m Width of slab Overall thickness of slab provided Assume clear cover Effective thickness of slab provided Height of the tank Hydraulic head n reinforcement Diameter of bar upward bending Provided spacing of bar inforcement Diameter of bar for downward bending provided spacing of bar	Preliminary data Grade of Concrete Grade of Steel Cylin.Com. strength of concrete fck Tensile Strength of steel pressed Design strength of steel rein. for Consider 1m Width of slab Overall thickness of slab provided h pro Assume clear cover c Effective thickness of slab provided h pro Height of the tank H tydraulic head ho inforcement Diameter of bar upward bending for Provided spacing of bar S	Preliminary data $=$ Grade of Concrete $=$ Grade of Steel $=$ Cylin.Com. strength of concretefck $=$ Tensile Strength of steelfyk $=$ Design strength of concretefcd $=$ Design strength of steel rein.fyd $=$ Design strength of steel rein.fyd $=$ Design strength of steel rein.fyd $=$ Oursider 1m Width of slabb $=$ Overall thickness of slab providedh pro $=$ Effective thickness of slab providedd pro $=$ Height of the tankH $=$ Hydraulic headhoo $=$ Diameter of bar upward bending ϕ $=$ Provided spacing of barS $=$ provided spacing of barS $=$ provided spacing of barS $=$ Note of bar for downward bending ϕ $=$ Provided spacing of barS $=$ Note of bar for downward bending ϕ $=$	Preliminary data $=$ C30Grade of Concrete $=$ S400Grade of Steel $=$ 24Cylin.Com. strength of concretefck $=$ Tensile Strength of steelfyk $=$ 400Design strength of concretefcd $=$ 0.85 x $=$ 0.85 x $=$ 0.85 x $=$ 13.613.6Design strength of steel rein.fyd $=$ 400 / 1 $=$ 347.822347.82Consider 1m Width of slabb $=$ 1000Overall thickness of slab providedh pro $=$ 229Height of the tankH $=$ 2.7Hydraulic headho $=$ 2.7nerinforcementS $=$ 90inforcementS $=$ 10provided spacing of barS $=$ 10provided spacing of barS $=$ 10provided spacing of barS $=$ 10	Preliminary data Grade of Concrete $=$ C30 Grade of Steel $=$ K400 Cylin.Com. strength of concrete fck $=$ 24 Tensile Strength of steel fyk $=$ 400 Design strength of concrete fcd $=$ 0.85 x fck/yc = 0.85 x 24 / 1.5 = 13.6 N/mm2 Design strength of steel rein. Design strength of steel rein. Design strength of steel rein. fyd = $fyk/ys=$ 400 / 1.15 = 347.826087 Consider 1m Width of slab b = 1000 mm Overall thickness of slab provided h pro $=$ 275 mm Assume clear cover $c =$ 400 mm Effective thickness of slab provided h pro $=$ 229 mm Height of the tank H $=$ 2.7 m Hydraulic head $b =$ 12 mm Provided spacing of bar $S =$ 90 mm inforcement Diameter of bar upward bending $\phi =$ 12 mm provided spacing of bar $S =$ 100 mm

5.2 CRACK WIDTH CALCULATION FOR LOADING STAGE - FLEXURE

[EN-1992-1-1: 7.3.4]

MATERIAL PROPERTY

Secant modulus of elasticity of concrete

Ecm = 22[0.8+0.1fck]

=	0.322x [0.8+ (0.1x24)]^0.3			
	=	31.19	Gpa	
Assume creep coefficient	φ	=	1.5	
Long term	Ec	=	$Ecm / (1+\phi)$	
		=	31.19/(1+1.5)	
		=	12.476 GPa	
Modulus of elasticity of steel	Es	=	200 GPa	
	αe	=	Es/Ec	
		=	200/12.476	
		=	16.0307791	

5.2.1 MINIMUM STEEL FOR LOADING-FLEXURE

	As,miı	1	=	KcKfc	t/fyk		
	Κ	=	1	for h	\leq	300	mm
	Κ	=	0.65	for h	\geq	800	mm
Interpolate the value of k.	Κ	=	1				
	Act	=	b x h				
		=	27500	0	mm2		
For flexure	Kc	=	0.5				
	fct, eff	.=	fctm				
		=	0.3fck	0.67			
		=	2.53	Mpa			
As, mi	n	=	869.68	875	mm2		
Bottom reinforcement							
Min. area of steel req	uired	As, ree	q =	869.68	875	mm2	
Required spacing of b	oar	S req	=	129.97	77219	mm	
Area of steel provideo	d for on	e face	As, pro) =	1256	mm2	
			As, pro	o>	As, rec	4	
Hence provided steel is sufficient to resist crack due to bending							

Top reinforcement

Client: Czech Development Agency..... Min. area of steel required As, required =869.6875 mm2 Required spacing of bar 90.26230686 mm S required = Area of steel provided for one face As, pro. 603.8461538 mm2 = As, required As, pro. <

5.2.2 MAXIMUM CRACK SPACING & ACTUAL CRACK WIDTH

Bottom reinforcement [Support moment]

Calculation of concrete & steel stresses

Depth of neutral axis

1/2 b X2		=	αeAs (d-X)
	Х	=	77.99 mm
Lever arm	Ζ	=	d-(X/3)
		=	229-(77.99/3)
		=	203.01 mm

Support Moment at serviceability limit state

M = 53.5 kNm/m

Stress in the tension steel

σs	=	M/Asz
	=	53.5x10^6/1256x203.01
	=	209.8199173 MPa
Stress in the concrete σc	=	2M/bxz
	=	2 x 53.5 x 10^6 / 1000 x 77.99 X 203.01
	=	6.758143764 MPa

Effective depth of concrete surrounding the reinforcement

hc, eff = min.[2.5(h-d); (h-x); 0.5h] = 115 mm

Effective area of concrete surrounding the reinforcement

Effective tension area of concrete	Ac, eff =	hc,eff b
	=	115000 mm ²
Effective reinforcement ratio	ρp,eff =	AS/Ac,eff

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report Client: Czech Development Agency

<u>Chent. Czech Develo</u>	pment 1	<u>rgeney</u> .			=	0.02		· · · ·
				fct,eff	=	fctm		
				,	=	0.3fck	0.67	
					=	2.5226	683616	Mpa
For long term	loading	ŗ		Kt	=	0.4		L
Calculation of mean strain in reinforcement		cement	- mean	strain ii	n concre	ete	[EN-1992-1-1: 7.9]	
esm-ecm	=	[σs-Kt	(fct,eff	/pp,eff)	(1+αe ρ	p,eff)]/]	Es >0.6	σs/Es
	=	0.0007	1595	>	0.0006	62946		
esm-ecm	=	0.0007	/16					
Calculation of	fmaxim	um crao	ck spaci	ng			[EN-1]	992-1-1: 7.11]
	Sr, ma	X.	=	k3c+k	1k2k4ø	/pp,eff		
For high bond	bars	k1	=	0.8				
For bending		k2	=	0.5				
		k3	=	3.4				
		k4	=	0.425				
	Sr, ma	X.	=	(3.4x4	0) + (0.	8x0.5x().425x1	2/0.02)
			=	238	mm			
Calculation of	f actual	crack w	ridth				[EN-1]	992-1-1: 7.8]
	Wk, a	et	=	Sr, ma	x. * (es	sm-ecm)	
			=	238x0.	000716	Ď		
			=	0.1704	-08	mm		
Calculation of	f permis	sible cr	ack wid	th				
	Tightn	ess clas	S	=	Choos	e tightn	ess clas	s 1
	Wk, p	er	=	0.2	for ho/	′h	\leq	5
	Wk, p	er	=	0.05	for ho/	′h	\geq	35
				h/ho	=	1		
Using interpo	lation P	ermissił	ole crac	k width				
	Wk,pe	r=	0.22	mm				
		>	Wk,ac	t				
This is	s an acc	eptable	crack w	ridth, Sa	tisfied!			

Top reinforcement [Field moment]

Calculation of concrete & steel stresses

Depth of neutral axis						
1/2 b X	12	=	aeAs (d-X)			
	Х	=	57.61 mm			
Lever arm	Ζ	=	d-(X/3)			
		=	229-(57.61/3)			
		=	209.8 mm			
Field Moment at servi	ceabilit	y limit	state			
	М	=	35.3 kNm/m			
Stress in the tension st	teel σs	=	M/Asz			
		=	35.3x10^6/603.846153846154x209.8			

	=	278.6396507 MPa
Stress in the concrete σc	=	2M/bxz
	=	2 x 35.3 x 10^6 / 1000 x 57.61 X 209.8
	=	5.84119012 MPa

Effective depth of concrete surrounding the reinforcement

hc,eff = min[2.5(h-d); (h-x); 0.5h]

> 115 = mm

Effective area of concrete surrounding the reinforcement

Effective tension area of concrete	Ac,eff	=	hc,eff b
		=	115000 mm2
Effective reinforcement ratio	ρp,eff	=	AS/Ac,eff
		=	0.01
	fct,eff	=	fctm
		=	0.3fck0.67
		=	2.522683616 Mpa
For long term loading	Kt	=	0.4

Calculation of mean strain in reinforcement - mean strain in concrete [EN-1992-1-1: 7.9]

[\sigmas-Kt (fct,eff/pp,eff)(1+ae pp,eff)]/Es >0.6\sigmas/Es esm-ecm = 0.00080778 < 0.000835919 = 0.000836 esm-ecm =

Client: Czech Developmen	t A gan		-	_	_	RESOURCE DEVELOPMENT, MANASSA
Calculation of maximum cr	rack spa	acing	•••••	<u></u>	••••	[EN-1992-1-1: 7.11]
Sr,max =	k3c-	k3c+k1k2k4φ/ρp,eff				
For high bond bars	k1	=	0.8			
For bending	k2	=	0.5			
	k3	=	3.4			
	k4	=	0.425			
Sr, max =	(3.4	x)+(0.8x	x0.5x0.425x2	03.01/0.0	1)	
=	170	mm				
Calculation of actual crack	width					[EN-1992-1-1: 7.8]
Wk,act=	Sr,n	nax x (es	sm-εcm)			
=	1702	x0.0008	36			
=	0.14	212	mm			
Calculation of permissible	crack w	vidth				
Tightness class	=	Choo	ose tightness	class 1		
Wk ne r	=	0.2	for ho/h	<	5	

wk,pe i =	0.2	101 110/11	_	5
Wk,per=	0.05	for ho/h	\geq	35

h/ho = 1

Using interpolation Permissible crack width

Wk,per= 0.22 mm > Wk,act

This is an acceptable crack width, Satisfied!

5.3 DESIGN FOR BENDING

BOTTOM REINFORCEMENT [SUPPORT MOMENT] [EN-1992-1-1: 9.2.1.1]

Diameter of bar for bending		ф	=	12	mm
Design bending moment at UL	S	Μ	=	66.2	kNm/m
		k	=	M/bd2	fck <0.167
			=	0.053	
Calculation of lever arm		Z/d	=	0.5[1+	√(1-3k/ŋ)]
			=	0.5 x [$1 + \sqrt{(1 - (3x0.053/1))]}$
			=	0.959	
Reinforcement required to resis	st bend	ling			
		As	=	M/[0.8	7fykz]
			=	66.2x1	0^6/(0.87x400x0.959x229)
					2
Area of steel for bending		As	=	866.22	mm2
Minimum area of steel		As,min	l≥	0.26 fc	$\operatorname{tm}/\operatorname{fyk} \operatorname{b} \operatorname{d} \ge 0.0013 \operatorname{b} \operatorname{d}$
£	ot off	_	fatm		IENI 1002 1 1. (0 1N)]
1	ci,en	=	Ictm		[EN-1992-1-1: (9.11N)]
		=	0.3fck().67	
		=	2.5226	83616	MPa
A	As,min	=	375.50	14563	> 297.7 mm2
Area of steel for required A	Areq	=	866.22	mm2	
Spacing of bars required S	Sreq	=	130.49	80259	mm
Maximum spacing of bar n	nax	=	$3h \le 40$	00mm	[EN-1992-1-1: 9.3.1.1(3)]
		=	400	mm	
Provided spacing of bar		=	90	mm	
		Hence	safe!		
Provided area of steel A	As,pro	=	1256	mm2	

TOP REINFORCEMENT [FIELD MOMENT]

[EN-1992-1-1: 9.2.1.1]

Diameter of bar for bending	φ =	10 mm
Design bending moment at U	JLS M =	44 kNm/m
	k =	M/bd2fck <0.167
	=	0.035
Calculation of lever arm	Z/d =	$0.5[1+\sqrt{(1-3k/\eta)}]$
	=	$0.5 \text{ x} [1 + \sqrt{(1 - (3 \times 0.035/1))]}$
	=	0.974
Reinforcement required to re	esist bending	
	As =	M/[0.87fykz]
	=	44x10^6/(0.87x400x0.974x229)
Area of steel for bending	As =	566.87 mm2
Minimum area of steel	As, min	\geq 0.26 fctm / fyk b d \geq 0.0013 b d
	fct,eff =	fctm [EN-1992-1-1: (9.1N)]
	=	0.3fck0.67
	=	2.522683616 MPa
	As,min=	375.5014563 > 357.5 mm2
Area of steel for required	Areq =	566.87 mm2
Spacing of bars required	Sreq =	138.479722 mm
Maximum spacing of bar	Smax =	$3h \le 400 \text{mm}$ [EN-1992-1-1: 9.3.1.1(3)]
	=	400 mm
Provided spacing of bar	=	130 mm
	Hence safe!	
Provided area of steel	As,pro =	603.85 mm2

EFFECTIVE DEPTH TO RESIST BENDING

Client: Czech Development Agency...... Required effective thickness of slab to resist bending

dreq =
$$\sqrt{(M/kbfck)}$$

= $\sqrt{[66.2x10^{6}/(0.167x1000x24)]}$
= 128.5183491 mm
< dpro

Hence provided wall thickness is sufficient to resist compression due to bending

5.4 DESIGNS FOR SHEAR AT BASE

Check the adequacy of the thickness to resist shear

Design shear force at base

	VED	=	69.575 kN
Lever arm, approximately	Z	=	0.98d
		=	224.42 mm
	ט1	=	0.6(1-fck/250)
		=	0.5424

For non-pre-stressed structures

 $\alpha cw = 1$

Conservatively assume $\cot \Theta = 1$

Crushing strength of the concrete diagonal strut

[EN-1992-1-1: (6.9)]

VRD, max = $0.9d \alpha cwb^{\circ}1 fcd/(cot\Theta+tan\Theta)$ = 760.162752 kN > VED

Hence the provided thickness is sufficient to resist compression due to shear!

Check whether shear reinforcement can be avoided

CRd,c =
$$0.18/yc$$

= $0.18/1.5$
= 0.12
k = $1+\sqrt{(200/d)} \le 2.0$

=	1+\sqrt{200/229}	
=	1.934538627 <	2
=	1.94	
=	100 Asl/bd ≤ 2	
=	100x1256/(1000x229)	$1 \leq 2$
=	$0.548471616 \leq$	2
=	0.55	
=	0.035K1.5√fck	[EN-1992-1-1: 6.3N]
=	0.035x1.94^1.5x√(24))
=	0.463314892	
		$= 1 + \sqrt{(200/229)}$ $= 1.934538627 <$ $= 1.94$ $= 100 \text{ Asl/bd} \le 2$ $= 100 \times 1256/(1000 \times 229)$ $= 0.548471616 \le$ $= 0.55$ $= 0.035 \times 1.5 \sqrt{\text{fck}}$ $= 0.035 \times 1.94^{1.5} \times \sqrt{(24)}$ $= 0.463314892$

The shear capacity of the concrete without any shear reinforcement [EN-1992-1-1: 6.2a]

VRd,c =	=	$CRd,cK[100\rho l fck]1/3bd \ge Vmin bd$						
=	=	0.12x1.94x(0.55x24)^(0.34)x1000x229/1000						
=	=	126	kN	>	106.0991104	kN		
=	=	106.09	91104	kN				
V	VRd,c	>	VRE					

Hence the provided depth is sufficient to resist tension due to shear without shear reinforcement

6 CHECK FOR BASE PRESSURE

H	ENGINEERING PLC	
6	DEPARTMENT OF CONSULTANCY ON WATER RESOURCE DEVELOPMENT, NAWASSA	м

Consider 1m Width of slab	b	=	1000	m
Overall thickness of wall provided	hpro	=	0.21	m
Inner diameter of tank	Di	=	7.14	m
Outer diameter of tank	Do	=	7.56	mm
Total height of the tank	Н	=	2.7	m
Thickness of top slab	ht	=	0.225	m
Diameter of top slab	Dt	=	7.56	
Thickness of bottom slab	hb	=	0.275	m
Diameter of bottom slab	Db	=	8.16	

Client: Czech Development Agency.....

50M³ RC CIRCULAR WATER TANK REST ON GROUND DESIGN DOCUMENT

CLAUSE CONTENTS

1 PRELIMINARY DATA

- 1.1 DIMENSIONS OF THE TANK
- 1.2 MATERIAL PROPERTY
- 1.3 LOAD COMBINATION
- 1.4 SAFE BEARING CAPACITY OF SOIL
- 2 STRUCTURAL ANALYSIS OF CIRCULAR WALL
- 2.1 MANUEL METHOD
- 2.1.1 MAXIMUM SHEAR FORCE AT BASE
- 2.1.2 MAXIMUM BENDING MOMENT AT BASE
- 2.1.3 MAXIMUM RING TENSION AT MIDDLE
- 2.2 FINITE ELEMENT METHOD
- 2.2 A **CIRCULAR WALL**
- 2.2.1 MAXIMUM SHEAR FORCE AT BASE
- 2.2.2 MAXIMUM BENDING MOMENT AT BASE
- 2.2.3 MAXIMUM RING TENSION AT MIDDLE
- 2.2 B TOP SLAB
- 2.2.1 MAXIMUM SHEAR FORCE
- 2.2.2 MAXIMUM BENDING MOMENT
- 2.2 C BASE SLAB
- 2.2.1 MAXIMUM SHEAR FORCE
- 2.2.2 MAXIMUM BENDING MOMENT
- **3A DESIGN OF CIRCULAR WALL FOR CRACK**
- 3.1 PRELIMINARY DATA

2.2	CRACK WIDTH CALCULATION FOR LOADING STAGE - FLEXURE &
5.2	RING TENSION
3 7 4	CRACK WIDTH CALCULATION FOR LOADING STAGE - FLEXURE
3.2A	ONLY
3.2.1	MINIMUM STEEL FOR LOADING-FLEXURE
3.2.2	MAXIMUM CRACK SPACING & ACTUAL CRACK WIDTH
3 2 B	CRACK WIDTH CALCULATION FOR LOADING STAGE - RING TENSION
J.2 D	ONLY
3.2.1	MINIMUM STEEL FOR LOADING-DIRECT TENSION
3.2.2	MAXIMUM CRACK SPACING & ACTUAL CRACK WIDTH
3B	DESIGN OF CIRCULAR WALL FOR LOADING
3.1	DESIGN FOR VERTICAL BENDING AT FIXED BASE
3.2	DESIGN FOR SHEAR AT BASE
3.3	DESIGN FOR RING TENSION AT MIDDLE
4	DESIGN OF TOP SLAB
4.1	PRELIMINARY DATA
4.2	DESIGN FOR BENDING
4.3	DESIGN FOR SHEAR
4.4	CHECK FOR DEFLECTION
5	DESIGN OF BASE SLAB
5.1	PRELIMINARY DATA
5.2	CRACK WIDTH CALCULATION FOR LOADING STAGE - FLEXURE
5.2.1	MINIMUM STEEL FOR LOADING-FLEXURE
5.2.2	MAXIMUM CRACK SPACING & ACTUAL CRACK WIDTH
5.3	DESIGN FOR BENDING
5.4	DESIGN FOR SHEAR
6	CHECK FOR BASE PRESSURE

1 PRELIMINARY DATA

1.1 **Dimensions of the tank**

Capacity of the tank	С	=	50	m ³
Height of the water tank	Η"	=	2	m
Clear board	h"	=	0.2	m
Total height of the water tank	Н	=	2.2	m
Internal diameter of the tank	Dreq	=	$\sqrt{50/[2x(3.14/4)]}$	
		=	5.65	m
Provided diameter of tank	D _{pro}	=	5.7	m
Provided volume of tank	C_{pro}	=	51.01	m ³
		>	100	m ³

1.2 Material Property

Grade of Concrete		=	C30	
Grade of Steel		=	S400	
Cylin.Com. strength of concrete	\mathbf{f}_{ck}	=	24	N/mm ²
Ten. Strength of steel	$f_{yk} \\$	=	400	N/mm ²
Design strength of concrete	\mathbf{f}_{cd}	=	0.85 x f	$c_{\rm ck}/\gamma_{\rm c}$

			=	0.85 x 2	24 / 1.5
			=	13.6	N/mm ²
	Design strength of steel rein.	$f_{yd} \\$	=	f_{yk} / γ_s	
			=	400 / 1.	.15
			=	347.8	N/mm ²
1.3	Load Combination			[EN 19	91-4-B3]
	Ultimate limit state			[EN 19	91-4-A2]
	Partial safety factor for dead load		=	1.35	
	Partial safety factor for Water pressure		=	1.2	
	Load Combination		=	1.35DL	2+1.2WP
	Serviceability limit state				
	Partial safety factor for dead load		=	1.0	
	Partial safety factor for Water pressure		=	1.0	
	Load Combination		=	1DL+1	WP
1.4	Base Pressure				
	Unit weight of water		=	10	kN/m ³
	Height of water including free board		=	2.2	m
	Water pressure at base		=	22	kN/m ²
1.5	Safe bearing capacity of soil				
	Considered safe bearing capacity of soil		=	100	kN/m ²
	Allowable deflection		=	0.01	m
	Modulus of sub grade reaction		=	100/0.0)1
			=	10000	kN/m²/m

2 STRUCTURAL ANALYSIS OF CIRCULAR WALL

2.1 MANUEL METHOD

	Height of the water tank	Н	=	2.2	m
	Internal diameter	D	=	5.7	m
	Wall thickness	t	=	180	m
	Parameter	h²/Dt	=	2.2^2/[5.7x(180/1000)]
			=	4.72	
	Base pressure	qh	=	22	kN/m 2
2.1.1	Maximum shear force at base				
		Coefficient	=	0.219	
	Maximum shear force at SLS		=	0.21944 x 2	2 x 2.2
			=	10.63	kN
	Maximum shear force at ULS [$\Upsilon_F=1$]	1.2]	=	1.2x10.63	
			=	12.76	kN
2.1.2	Maximum Bending moment at ba	ise			
		Coefficient	=	0.023	
	Maximum bending moment at SLS		=	0.023488 x 2	22 x 2.2^2
			=	2.51	kN-m
	Maximum bending moment at ULS	[Y _F =1.2]	=	1.2x2.51	
			=	3.012	kN-m
2.1.3	Maximum Ring tension at middle)			
		Coefficient	=	0.464	
	Maximum ring tension at SLS		=	0.46356 x 2	2 x 2.85
			=	29.07	kN
	Maximum ring tension at ULS $[\Upsilon_F=1.2]$		=	1.2x29.07	
			=	34.88	kN

2.2 **FINITE ELEMENT METHOD**

2.2 A **CIRCULAR WALL**

2.2.1 Maximum shear force at base

Maximum shear force at SLS	=	51.7	kN/m 2
Maximum shear force at SLS	=	9.306	kN
Maximum shear force at ULS $[\Upsilon_F=1.2]$	=	1.2x9.306	
	=	11.17	kN

2.2.2 Maximum Bending moment at base

Maximum bending moment at SLS	=	1.86	kNm
Maximum bending moment at ULS [$Y_F=1.2$]	=	1.2x1.86	
	=	2.232	kN

2.2.3 Maximum Ring tension at middle

Maximum ring tension at SLS	= 163	kN/m ²
Maximum ring tension at SLS	= 29.34	kN
Maximum ring tension at ULS [$\gamma_F=1.2$]	= 1.2x29.34	
	= 35.21	kN

Comparing the analysis results obtained from manual and finite element method, the result from Manuel method considered for structural design.

H CONSULTANCY OF CONSULTANCY OF WATER RECORDED EXTENSION

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report Client: Czech Development Agency.....

2.2 B TOP SLAB

Load combination	=	1.35DL	+1.5LL
Live load considered	=	1	kN/m ²

2.2.1 Maximum shear force

Maximum shear force at SLS	=	54.3	kN/m ²
Thickness of top slab	=	180	mm
Maximum shear force at ULS	=	9.774	kN

2.2.2 Maximum Bending moment

About both X & Y axis

Maximum bending moment at ULS = 14 kN

2.2 C BASE SLAB

2.2.1 Maximum shear force

Maximum shear force at ULS	=	215	kN/m ²
Thickness of top slab	=	225	mm
Maximum shear force at ULS	=	48.38	kN

2.2.2 Maximum moment MX (local) kNm/m

About both X & Y axis			
Design support moment at ULS	=	33.7	kNm
Design span moment at ULS	=	26	kNm
Design support moment at SLS	=	27	kNm
Design span moment at SLS	=	21	kNm

3A DESIGN OF CIRCULAR WALL FOR CRACK

3.1 **Preliminary data**

Grade of Concrete		=	C30	
Grade of Steel		=	S400	
Cylin.Com. strength of concrete	$f_{ck} \\$	=	24	N/mm ²
Ten. Strength of steel	$f_{yk} \\$	=	400	N/mm ²
Design strength of concrete	$f_{cd} \\$	=	0.85 x	f_{ck}/γ_c
		=	0.85 x	24 / 1.5
		=	13.6	N/mm ²
Design strength of steel rein.	$f_{yd} \\$	=	f_{yk}/γ_s	
		=	400 / 1	.15
		=	347.8	N/mm ²
Consider 1m Width of wall	b	=	1000	mm
Overall thickness of wall provided	h _{pro}	=	180	mm
Assume clear cover	c	=	40	mm
Effective thickness of wall provided	d _{pro}	=	136	mm
Height of the tank	Н	=	2.2	m
Hydraulic head	ho	=	2.2	m
For flexure				
Diameter of bar for bending	ф	=	8	mm
Provided spacing of bar	S	=	135	mm
For Pure tension				
Diameter of bar for pure tension	ф	=	10	mm
Provided spacing of bar	S	=	85	mm

3.2 <u>CRACK WIDTH CALCULATION FOR LOADING STAGE - FLEXURE &</u> <u>RING TENSION MATERIAL PROPERTY</u>

Client: Czech Development Agency.....

Secant modulus of elasticity	
of concrete	

	E_{cm}	=	22[0.8+0.	$1 f_{ck}]^{0.3}$
			22x[0.8+([0.1x24)]^0.3
		=	31.19	Gpa
Assume creep coefficient	ф	=	1.5	
Long term	Ec	=	$E_{cm}/(1+q)$)
			31.19/(1+	1.5)
		=	12.48	GPa
Modulus of elasticity of steel	Es	=	200	GPa
	α _e	=	Es/Ec	
		=	200/12.47	'6

3.2.A CRACK WIDTH CALCULATION FOR LOADING STAGE - FLEXURE ONLY [EN-1992-1-1: 7.3.4]

3.2.1 MINIMUM STEEL FOR LOADING-FLEXURE

	As,mir	n =	KcKfc	t,effAct	/fyk		
	Κ	=	1.00	for h	\leq 300	mm	
	Κ	=	0.65	for h	≥ 800	mm	
Interpolate the value of k.	Κ	=	1				
	Act	=	b x h				
		=	180000) mm2			
For flexure	Kc	=	0.5				
	fct,eff	=	fctm				
		=	0.3fck().67			
		=	2.53	Mpa			
As, mi	n	=	569.25	mm2			
Min. area of steel requ	uired fo	r two fa	ces as,	req, 2	=	569.25 mm2	
Min. area of steel requ	uired fo	r one fa	ceAs,re	q,1	=	284.625	mm2
Required spacing of b	ar			S req.	=	176.5129556	mm

'Awayo Keraro Kebele' Water Supply Project I Client: Czech Development Agency	Detailed Design F	Report		RING
Area of steel provided for one face	As, pro =	372.	.15 mm2	
	As, pro	>	As, req, 1	

PLC

Hence provided steel is sufficient to resist crack due to bending

3.2.2 MAXIMUM CRACK SPACING & ACTUAL CRACK WIDTH

3.2.2.1 Calculation of concrete & steel stresses

Depth of neutral axis

	1/2 b X2	= α	eAs (d-X)	
	Х	=	34.76 mm	
Lever arm	Ζ	=	d-(X/3)	
		=	136-(34.76/3)	
		=	124.42 mm	
Moment at base at serviceab	ility limit sta	ite		
	М	=	1.86 kNm/m	

Stress in the tension steel	σs	=	M/Asz
		=	1.86x10^6/372.15x124.42

= 40.17026751	MPa
---------------	-----

Stress in the concrete	σc	=	2M/bz
		=	2 x 1.86 x 10^6 / 1000 x 34.76 x 124.42

= 0.860147587	MPa
---------------	-----

Effective depth of concrete surrounding the reinforcement

hc,eff = min[2.5(h-d); (h-x); 0.5h]

Mpa

	=	55.58	mm
Effective area of concrete surroundin	ng the re	einforce	ment
Effective tension area of concrete Ad	c, eff.	=	hc, eff. b
		=	55580 mm2
Effective reinforcement ratio	ρp,eff	=	AS/Ac,eff
		=	0.01
	fct,eff	=	fctm
		=	0.3fck0.67
		=	2.522683616

For long term loading Kt = 0.4

3.2.2.2 Calculation of mean strain in reinforcement - mean strain in concrete

					[EN-1992-1-1: 7.9]
esm-ecm	=	[σs-Kt (fct,	eff/pp,ef	f)(1+αe	$\rho p, eff)]/Es > 0.6\sigma s/Es$
	=	-0.00038		<	0.00012
	esm-	εcm	=	0.00	012

3.2.2.3 Calculation of maximum crack spacing

		[EN-1992-1-1: 7.11]						
	Sr,max =	k3c+k1	l k2k4¢/	ρp,eff				
For high bond	l bars	k1	=	0.8				
For bending		k2	=	0.5				
		k3	=	3.4				
		k4	=	0.425				
		Sr,max	=	(3.4x4	0)+(0.8x0.5x0.425x8/0.01)			
			=	272	mm			

3.2.2.4 Calculation of actual crack width

[EN-1992-1-1: 7.8]

Wk,act =
$$Sr,max x (\epsilon sm - \epsilon cm)$$

'Awayo Keraro Kebele' Wate	r Supply Project De	tailed De	esign Report	H		LĢ
Client: Czech Development A	gency				12	а _ј п
-	=	272x0	0.000121			
	=	0.032	912 mm	l		
3.2.2.5 Calculation of permiss	ible crack width					
Tightness class	=	Choos	se tightness c	lass 1		
	Wk,per=	0.2	for ho/h	\leq	5	
	Wk,per=	0.05	for ho/h	\geq	35	
	h/ho =	1				
Using interpolation Pe	rmissible crack widt	h				

Using interpolation Permissible crack width

Wk,per= 0.2 mm > Wk,act

This is an acceptable crack width, Satisfied

3.2 B CRACK WIDTH CALCULATION FOR LOADING STAGE - RING TENSION ONLY

3.2.1 MINIMUM STEEL FOR LOADING-DIRECT TENSION

[EN-1992-1-1: 7.1]

As, min KcKfct,effAct/fyk = Κ 1 for $h \leq$ 300 = mm Κ 0.65 = for $h \geq$ 800 mm Interpolate the value of k. Κ 1 = Act b x h = 180000 mm2 = For pure tension Kc 1 = fct,eff =fctm 0.3fck0.67 = 2.522683616 Mpa = As, min= 1135.207627 mm2 Min. area of steel required for two face As,req,2= 1135.207627 mm2

Min. area of steel required for one face	As,req,1=	567.6038137 mm2
Required spacing of bar	S req. =	138.3006916 mm
Min. area of steel provided for one face	As,pro = As,pro >	923.5294118 mm2 As,req,1

Hence provided steel is sufficient to resist crack due to direct tension

3.2.2 MAXIMUM CRACK SPACING & ACTUAL CRACK WIDTH 3.2.2.1 Calculation of concrete & steel stresses

Maximum ring tension occur at mid height at SLS

T = 300 kN/m

Stresses in tension reinforcement by assuming cracked section

All the tension is resisted by steel

Stress in the tension steel $\sigma s = T/As$ = $300x10^3/(2x923.529411764706)$

Stress in the concrete	$\sigma s =$	162.4203822 MPa
	hc,eff =	min[2.5(h-d); 0.5h]
	=	90 mm

Effective area of concrete surrounding the reinforcement

Effective tension area of concrete	Ac,eff	=	hc,eff l	b
		=	90000	mm2
Effective reinforcement ratio	ρp,eff	=	AS/Ac	,eff
			=	0.02
		fct,eff	=	fctm
			=	0.3fck0.67

'Awayo Keraro Kebele' Wa	iter Supp	oly Proj	ect Deta	ailed De	esign Re	port	HV	
<u>Client. Czech Development</u>	Agency				=	2.52268	3616	Mpa
For long term loadin	g			Kt	=	0.4		
3.2.2.2 Calculation of mean	n strain	in rein	forcem	ent - m	ean stra	ain in con	crete	
						[EN-199	92-1-1	: 7.3.4]
esm-ecm	=	[σs-K	t (fct,eff	γρp,eff)(1+αe p	p,eff)]/Es	>0.6	סs∕Es
	=	0.0004	479		<	0.00048	7261	
esm-ecm	=	0.000	48727					
3.2.2.3 Calculation of max	imum c	rack sp	acing					
Maximum crack spa	cing, Sr,	, max	=k3c+	k1k2k4	↓φ/ρp,ef	f [EN-1	992-1	-1: 7.11]
For high bond bars		k1	=	0.8				
For pure tension		k2	=	1				
		k3	=	3.4				
		k4	=	0.425				
	Sr,ma	ıx	=	(3.4x4	40)+(0.8	x1x0.425	x10/0	.02)
			=	306	mm			
3.2.2.4 Calculation of actu	al crack	width						
	[EN-1	992-1-	1: 7.8]					
	Wk,ac	e t	=	Sr,ma	x x (ɛsn	n-ecm)		
			=	306x0	0.000487	727		
			=	0.149	10462	mm		
3.2.2.5 Calculation of perm	nissible	crack v	width			[E]	N-199	2-3-7.3.1]
Tight	ness clas	SS	=	Choos	se tightn	ess class	1	
Permissible crack w	vidth							
	Wk, p	er	=	0.2	mm			
			>	Wk, a	ict			
This is an ac	ceptabl	e crack	x width,	Satisfi	ed			

CONCLUSION: Minimum requirements as per code - each face & each direction

For f	exure				
	Actual crack width	=	0.032	912	mm
	Diameter of bar	=	8	mm	
	Spacing of bar	=	135	mm	
For p	ure tension				
	Actual crack width	=	0.149	10462	mm
	Diameter of bar	=	10	mm	
	Spacing of bar	=	85	mm	

3B DESIGN OF CIRCULAR WALL FOR LOADING

3.1 **DESIGN FOR VERTICAL BENDING AT FIXED BASE**

3.1.1 Calculation of reinforcement to resist bending causing tension

Moment at base at serviceability limit state

Μ 1.86 kNm/m = Maximum bending moment causing tension on inner face at base at ULS [$\Upsilon f=1.2$]: 2.232 kNm/m Μ = k M/bd2fck < 0.167 =

		=	0.00503
Calculation of lever arm	Z/d	=	$0.5[1+\sqrt{(1-3k/\eta)}]$
		=	$0.5 \ge [1 + \sqrt{(1 - (3 \ge 0.00503/1))]}$
		=	0.997

Total reinforcement required to resist cantilever bending

As	=	M/[0.87fykz]
	=	2.232x10^6/(0.87x400x0.997x136)
	=	47.30214986 mm2
Area of steel for bending	As,rec	$q = 47.30214986 \text{ mm}^2$

Czech Development Agency				
Spacing of bars for bending Sreq	=	1062.1	08174	mm
Minimum spacing of bar for crack co	ontrol	=	135	mm
Required spacing of bar		=	135	mm
Provided spacing of bar		=	135	mm
Hence safe				
Provided area of steel	As,pro	=	372.15	mm2

3.1.2 Check the effective thickness of wall to resist bending causing compression

Required effective thickness of slab to resist bending

dreq	=	√(M/0.196bfck
	=	$\sqrt{[2.232x10^{6}/(0.196x1000x24)]}$
	=	21.78278669 mm
	<	dpro

Hence provided wall thickness is sufficient to resist compression due to bending

3.2 DESIGNS FOR SHEAR AT BASE

3.2.1 Check the adequacy of the thickness to resist shear

Maximum shear force at base at SLS

V = 9.306 kN

Maximum shear force at base at ULS [Yf=1.2]:

VED	=	11.16	72	kN
Lever arm, approximately	Z	=	0.98d	
		=	133.28	mm
	v1	=	0.6(1-f	ck/250)
		=	0.5424	
For non-pre-stressed structur	es			

$$\alpha cw = 1$$

Conservatively assume $\cot \Theta = 1$

Client: Czech Development Agency.....

$$[EN-1992-1-1: (6.9)]$$
VRD, max = 0.9d acwb^v1fcd/(cot Θ +tan Θ)
= 451.450368 kN
> VED

Hence the provided thickness is sufficient to resist compression due to shear

3.2.2 Check whether shear reinforcement can be avoided

	[EN-19	992-1-1: 6.2.2 ([1)]	
CRd,c	=	0.18/yc=	0.18/1.	5
	=	0.12		
k	=	$1 + \sqrt{(200/d)} \le 2$.0	
	=	1+\sqrt{200/136}		
	=	2.212678125	>	2
	=	2		
100pl	=	100 Asl/bd ≤2		
	=	100x372.15/(1	000x13	$(6) \leq 2$
	=	0.273639706	\leq	2
	=	0.28		
V min	=	0.035K1.5√fck	ζ	[EN-1992-1-1: 6.3N]
	=	0.035x2^1.5x	(24)	
	=	0.484974226		

The shear capacity of the concrete without any shear reinforcement

$$[EN-1992-1-1: 6.2a]$$

$$VRd,c = CRd,cK[100\rho l fck]1/3bd \ge Vmin bd$$

$$= 0.12x2x (0.28x24)^{(0.34)}x1000x136/1000$$

$$= 61.6 kN < 65.95649475 kN$$

$$= 61.6 kN$$

$$VRd,c > VRE$$

Hence the provided depth is sufficient to resist tension due to shear without shear reinforcement

Direct tension at ULS = 35.208 kNTotal direct tension at ULS [Yf=1.2]

 $T = 1.2 \times 35.208 \\ = 42.2496$ kN

Total reinforcement required to resist direct tension

As = T/0.87x fy = 42.2496x1000/(0.87x400)

= 121.4068966 mm3/m

Area of steel for direct tension

As,req,2	=	121.40	68966	mm2			
For one face	As,req	,1	=	60.703	344828	mm2	
Spacing of bar	for dir	ect tens	ion	S	=	1293.172006	mm

Minimum spacing of bar for crack control	S min =	85	mm
Required spacing of bar	S req. =	85	mm
Provided spacing of bar	S pro. =	85	mm
	>	S req.	

Hence satisfied

Provided area of steel	As, pro=	923.5294118
Minimum staal		

Minimum steel

Minimum area of steel for each face & each direction

= 0.2%Ac = 360 mm2

Vertical bar above 0.2h from base -inner face

Diameter of bar = 8 mm

cy				L
=	139.5	555556	mm	
=	135	mm		
=	8	mm		
=	139.5	555556		
=	135	mm		
rom base	e			
=	8	mm		
=	139.5	555556		
=	135	mm		
	2 <u>y</u> = = = = irom base = = =	= 139.5 = 135 = 135 = 139.5 = 135 From base = 8 = 139.5 = 135	= 139.5555556 $= 135 mm$ $= 8 mm$ $= 139.5555556$ $= 135 mm$ from base $= 8 mm$ $= 139.5555556$ $= 135 mm$	= 139.5555556 mm $= 135 mm$ $= 8 mm$ $= 139.5555556$ $= 135 mm$ From base $= 8 mm$ $= 139.5555556$ $= 135 mm$

4 DESIGN OF TOP SLAB

4.1 Preliminary data

Grade of Concrete		=	C30		
Grade of Steel		=	S400		
Cylin.Com. strength of concr	ete, fck	=	24	N/mm2	2
Tensile Strength of steel	fyk	=	400	N/mm2	2
Design strength of concrete	fcd	=	0.85 x	fck/yc	
		=	0.85 x	24 / 1.5	
		=	13.6	N/mm2	2
Design strength of steel rein.	fyd	=	fyk / y	s	
		=	400 / 1	.15	
		=	347.82	6087	N/mm2

Consider 1m Width of slab b	=	1000	mm	
Overall thickness of slab provided	h pro.	=	180	mm
Assume clear cover	c	=	25	mm
Effective thickness of slab provided	d pro.	=	151	mm

4.2 DESIGN FOR BENDING

BOTTOM REINFORCEMENT

[EN-1992-1-1: 9.2.1.1]

Diameter of bar for bending	ф	=	8	mm
Design bending moment at ULS				
	М	=	14	kNm/m
	k	=	M/bd2	2fck <0.167
		=	0.026	
Calculation of lever arm	Z/d	=	0.5[1-	+√(1-3k/ŋ)]
		=	0.5 x	$[1+\sqrt{(1-(3x0.026/1))]}]$

	1				=	0.981				
Reinforcemer	nt requir	ed resis	ting ber	ding						
				As	=	M/[0.8	7fykz]			
					=	14x10⁄	^6/(0.87	/x400x0	.981x1:	51)
Area of steel	for bend	ling		As	=	271.59	mm2			
Minimum are	a of ste	el	As, mi	n	2	0.26 fc	tm / fyl	$c b d \ge 0$	0.0013 ł	o d
			fct,eff	=	fctm		[EN-19	992-1-1	: (9.1N))]
						=	0.3fck	0.67		
						=	2.5226	83616	MPa	
	As,mi	n	=	247.60	13969	>	196.3	mm2		
Area of steel	for requ	ired	Areq	=	271.59	mm2				
Spacing of ba	rs requi	red	Sreq	=	184.98	47196	mm			
Maximum spa	acing of	bar								
Smax =	$3h \le 4$	00mm		[EN-19	992-1-1	: 9.3.1.1	1(3)]			
=	400	mm								
Provided space	cing of l	oar		=	150	mm				
	Hence	e safe								
Provided area	of stee	1	As, pro) =	334.94	mm2				
Check the eff	ective t	hickness	of wall	to resis	st bendi	ng caus	ing con	npressio	n	
Required effe	ctive th	ickness	of slab	to resist	bendin	g				

dreq	=	√(M/kbfck
	=	$\sqrt{[14x10^{6}/(0.026x1000x24)]}$
	=	149.7861724 mm
	<	d pro.

Hence provided wall thickness is sufficient to resist compression due to bending

4.3 DESIGN FOR SHEAR

Check the adequacy of the thickness to resist shear Design shear force at base

VED	=	9.774	kN
Lever arm, approximately	Z	=	0.98d
		=	147.98 mm
	ט"1	=	0.6(1-fck/250)
		=	0.5424

For non-pre-stressed structures

 $\alpha cw = 1$

Conservatively assume cot Θ =1

Crushing strength of the concrete diagonal strut

$$[EN-1992-1-1: (6.9)]$$
VRD, max = 0.9d \acwb^{v}1fcd/(cot\Omega+tan\Omega)
= 501.242688 kN
> VED

Hence the provided thickness is sufficient to resist compression due to shear

Check whether shear reinforcement can be avoided

$$[EN-1992-1-1: 6.2.2 (1)]$$

$$CRd,c = 0.18/\gamma c= 0.18/1.5$$

$$= 0.12$$

$$k = 1+\sqrt{(200/d)} \le 2.0$$

$$= 1+\sqrt{(200/151)}$$

$$= 2.150870675 > 2$$

$$= 2$$

$$100\rho I = 100 \text{ Asl/bd } \le 2$$

$$= 100x334.94/(1000x151) \le 2$$

$$= 0.22181457 \le 2$$

$$= 0.23$$

 Client: Czech Development Agency.
 [EN-1992-1-1: 6.3N]

 Vmin
 =
 $0.035 \text{ k} 2^{1.5} \text{ s} \sqrt{24}$

 =
 0.484974226

The shear capacity of the concrete without any shear reinforcement

				[EN-1	992-1-1: 6.2a]
VRd,c =	CRd,	cK[100ρ	ol fck]1/	$3bd \ge Vn$	nin bd	
=	0.12x	2x(0.23	x24)^(0	.34)x1000	Dx151	/1000
=	64.05	kN	<	73.2311	0814	kN
=	64.05	kN				
VRd.c >	VRE					

Hence the provided depth is sufficient to resist tension due to shear without shear reinforcement

4.4 CHECK FOR DEFLECTION

[EN-1992-1-1: (7.16a)]

Limiting span to depth ratio	L/d	=	K[11+	$-1.5\sqrt{fck\rhoo/\rho+3.2\sqrt{fck(\rhoo/\rho-1)3/2}}$
For simply supported slab	Κ	=	1	[EN-1992-1-1: 7.4N]
The reference reinforcement ratio		ρο	=	$0.1\sqrt{\text{fck}}$
			=	0.489897949

Required tension reinforcement ratio at mid span

	ρ	=	0.180
Basic	L/d, limit	=	66.42
Modified	L/d, limit	=	66.42x334.94/271.59
		=	81.91286424
Actual span to depth ratio	L/d, actual	=	37.74834437
		<	L/d,limit

Hence the provided depth is sufficient to resist deflection

Simply supported edges

5 DESIGN OF TOP SLAB

5.1	Preliminary data				
	Grade of Concrete		=	C30	
	Grade of Steel		=	S400	
	Cylin.Com. strength of concrete	fck	=	24	N/mm2
	Tensile Strength of steel	fyk	=	400	N/mm2
	Design strength of concrete	fcd	=	0.85 x	fck/yc
			=	0.85 x	24 / 1.5
			=	13.6	N/mm2
	Design strength of steel rein.	fyd	=	fyk / γ	Ś
			=	400 / 1	1.15
			=	347.82	26087 N/mm2
	Consider 1m Width of slab	b	=	1000	mm
	Overall thickness of slab provided	h pro.	=	225	mm
	Assume clear cover	c	=	40	mm
	Effective thickness of slab provided	d pro.	=	181	mm
	Height of the tank	Н	=	2.2	m
	Hydraulic head	ho	=	2.2	m
	Bottom reinforcement				
	Diameter of bar upward bending		=	8	mm
	Provided spacing of bar	S	=	70	mm

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report <u>Client: Czech Development Agency</u>..... Top reinforcement

-				
Diameter of bar for downward bend	ding ø	=	8	mm
Provided spacing of bar	S	=	140	mm

5.2 CRACK WIDTH CALCULATION FOR LOADING STAGE - FLEXURE

[EN-1992-1-1: 7.3.4]

MATERIAL PROPERTY

Secant modulus of elasticity of concrete,

Ecm = 22[0.8+0.1fck]0.3

= 22x[0.8+(0.1x24)]^0.3

= 31.19 Gpa

Assume creep coefficient ϕ = 1.5 Long term Ec = Ecm / (1+ ϕ) = 31.19/(1+1.5) = 12.476 GPa Modulus of elasticity of steel . Es = 200

Iodulus of elasticity of steel, E	s =	200 GPa
αe	=	Es/Ec
	=	200/12.476
	=	16.0307791

5.2.1 MINIMUM STEEL FOR LOADING-FLEXURE

	As,min.		= KcKfct,eff		t,effAct	Act/fyk		
	Κ	=	1	for h	\leq	300	mm	
	Κ	=	0.65	for h	\geq	800	mm	
Interpolate the value of k.	Κ	=	1					
	Act	=	b x h					
		=	22500	0	mm2			
For flexure	Kc	=	0.5					
	fct,eff	=	fctm					
		=	0.3fck	0.67				

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report							
Cheffer: Czech Development Agency	· • • • • • • • • • • • •		=	2.53	Mpa	•••	
	As, mi	n.	=	711.56	525	mm2	
Bottom reinforcement							
Min. area of steel required	As, rec].	=	711.56	525	mm2	
Required spacing of bar		S req.	=	70.605	518226	mm	
Area of steel provided for or	ne face	As, pr	0.	=	717.72	2 mm2	
		As, pr	0	>	As, rec] .	

H VENGINEERING PLC

0,14

Hence provided steel is sufficient to resist crack due to bending

Top reinforcement

Min. area of steel required As	s, req.	=	711.56	25	mm2	
Required spacing of bar	S req.	=	70.605	18226	mm	
Area of steel provided for one	e face	As, pro)=	358.85	71429	mm2

As, pro < As, req.

5.2.2 MAXIMUM CRACK SPACING & ACTUAL CRACK WIDTH

Bottom reinforcement [Support moment]

Calculation of concrete & steel stresses

Depth of neutral axis

 $1/2 b X2 = \alpha eAs (d-X)$

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report Client: Czech Development Agency.....

	Х	=	54.05	mm				
Lever arm	Ζ	=	d-(X/3)				
		=	181-(5	4.05/3)				
		=	162.99	mm				
Support Moment a	t service	ability lir	nit state					
	М	=	27	kNm/r	n			
Stress in the tensic	n steel	σs	=	M/Asz				
			=	27x10	^6/717.	72x162	.99	
			=	230.80	63515	MPa		
Stress in the concr	ete	σc	=	2M/bx	Z			
			=	2 x 27	x 10^6	/ 1000	x 54.05 X 162.	9
			=	6.1296	570106	MPa		
Effective depth of	concrete	surround	ling the	reinforc	cement			
		hc,eff	=	min[2.	5(h-d);	(h-x); 0	0.5h]	
			=	110	mm			
Effective area of c	oncrete s	surroundi	ng the re	einforce	ement			
Effective tension a	rea of co	oncrete	Ac,eff	=	hc,eff	b		
				=	11000	0	mm2	
Effective reinforce	ment rat	io	ρp,eff	=	AS/Ac	e,eff		
				=	0.01			
					fct,eff	=	fctm	
						=	0.3fck0.67	
						=	2.522683616	Mpa
For long term load	ing		Kt	=	0.4			
Calculation of mea	ın strain	in reinfor	cement	- mean	strain i	n concre	ete	
						[EN-1	992-1-1: 7.9]	

 ϵ sm- ϵ cm = [σ s-Kt (fct,eff/ ρ p,eff)(1+ α e ρ p,eff)]/Es >0.6 σ s/Es

Client: Cze	ch Development A	Agency.				
	*	=	0.0005	68614	<	0.000692419
εsm	-ecm	=	0.0006	93		
Cale	culation of maxim	um crae	ck spaci	ng		
			[EN-19	992-1-1	: 7.11]	
	Sr, max	=	k3c+k	1k2k4ø	/pp,eff	
For	high bond bars	k1	=	0.8		
For	bending	k2	=	0.5		
		k3	=	3.4		
		k4	=	0.425		
	Sr, ma	X	=	(3.4x4	0)+(0.8	x0.5x0.425x8/0.01)
			=	272	mm	
Cal	culation of actual	crack w	ridth			
		[EN-19	992-1-1	: 7.8]		
	Wk,ac	t	=	Sr,max	x x (ɛsm	n-ecm)
			=	272x0.	000693	;
			=	0.1884	.96	mm
Cal	culation of permis	sible cr	ack wid	th		
	Tightness clas	s	=	Choose	e tightn	ess class 1

Wk,per	=	0.2	for ho/h	\leq	5
Wk,per	=	0.05	for ho/h	\geq	35
h/ho	=	1			

Using interpolation Permissible crack width

Wk,per. = 0.2 mm> Wk,act

This is an acceptable crack width, Satisfied

Top reinforcement [Field moment]

Calculation of concrete & steel stresses

Depth of neutral axis

 $1/2 b X^2 = \alpha eAs (d-X)$

	Х	-	=	40.25	mm	
Lever arm	Z		=	d-(X/3)	
			=	181-(4	0.25/3)	
			=	167.59	mm	
Field Moment at serve	iceability	limit s	state			
	Ν	1	=	21	kNm/m	
Stress in the tension s	teel o	s	=	M/Asz		
			=	21x10/	6/358.857142	857143x167.59
			=	349.18	01914 MPa	
Stress in the concrete	σ	c	=	2M/bx	Z	
			=	2 x 21	x 10^6 / 1000	x 40.25 X 167.59
			=	6.2263	75445 MPa	
Effective depth of cor	ncrete surr	oundi	ing the	reinforc	ement	
	h	c, eff.	=	min[2.	5(h-d); (h-x); 0	.5h]
			=	110	mm	
Effective area of conc	crete surro	undin	g the re	inforce	ment	
Effective tension area	of concre	ete	Ac,eff	=	hc,eff b	
				=	110000	mm2
Effective reinforceme	ent ratio		ρp,eff	=	AS/Ac,eff	
				=	0.01	
			fct,eff	=	fctm	
				=	0.3fck0.67	
				=	2.522683616	Mpa
For long term loading)		Kt	=	2.522683616 0.4	Mpa
For long term loading Calculation of mean s	train in re	inforc	Kt cement	= = - mean	2.522683616 0.4 strain in concre	Mpa ete
For long term loading Calculation of mean s	strain in re	inforc	Kt cement	= = - mean	2.522683616 0.4 strain in concre [EN-1	Mpa ete 992-1-1: 7.9]
For long term loading Calculation of mean s ɛsm-ɛcm	strain in re	inforc 5s-Kt	Kt cement (fct,eff/	= = - mean	2.522683616 0.4 strain in concre [EN-1 (1+αe ρp,eff)]/J	Mpa ete 992-1-1: 7.9] Es >0.6σs/Es
For long term loading Calculation of mean s ɛsm-ɛcm	strain in re = [c	inforc 5s-Kt	Kt æment (fct,eff/	= = - mean	2.522683616 0.4 strain in concre [EN-1 ⁴ (1+αe ρp,eff)]/J	Mpa ete 992-1-1: 7.9] Es >0.6σs/Es
For long term loading Calculation of mean s ɛsm-ɛcm	strain in re = [c = 0.	inforc 5s-Kt .00110	Kt æment (fct,eff/ 60483	= - mean (ρp,eff)(2.522683616 0.4 strain in concre [EN-1] (1+αε ρp,eff)]/J 0.001047541	Mpa ete 992-1-1: 7.9] Es >0.6σs/Es
For long term loading Calculation of mean s ɛsm-ɛcm ɛsm-ɛcm	$= \begin{bmatrix} c \\ = \\ = \\ 0 \end{bmatrix}$	inforc 5s-Kt .00114	Kt æment (fct,eff/ 60483 61	= - mean ζρp,eff)(>	2.522683616 0.4 strain in concre [EN-1 (1+αe ρp,eff)]/1 0.001047541	Mpa ete 992-1-1: 7.9] Es >0.6σs/Es

Client: Czech Development Agency.....

		[EN-1992-1-1: 7.11]						
S	Sr,max =	k3c+k1k2k4φ/ρp,eff						
For high bond b	ars k1	=	0.8					
For bending	k2	=	0.5					
	k3	=	3.4					
	k4	=	0.425					
	`Sr,max	=	(3.4x)+(0.8x0.5x0.425x162.99/0.01)					
		=	136 mm					

Calculation of actual crack width

[EN-1992-1-	1: 7.8]	
Wk,act.	=	Sr,max x (es	sm-ɛcm)
	=	136x0.0011	61
	=	0.157896	mm

Calculation of permissible crack width

Tightness class	=	Choo	se tightness c	lass 1	
Wk,per.	=	0.2	for ho/h	\leq	5
Wk,per.	=	0.05	for ho/h	\geq	35
h/ho	=	1			

Using interpolation Permissible crack width

Wk,per. = 0.2 mm > Wk,act

This is an acceptable crack width, Satisfied

5.3 DESIGN FOR BENDING

BOTTOM REINFORCEMENT [SUPPORT MOMENT]

[EN-1992-1-1: 9.2.1.1]

Diameter of bar for bending ϕ	=	8	mm	
Design bending moment at ULS	М	=	33.7	kNm/m

		k	=	M/bd2	lfck <0.167
			=	0.043	
Calculation of lever arm		Z/d	=	0.5[1+	-√(1-3k/ŋ)]
			=	0.5 x [$[1+\sqrt{(1-(3x0.043/1))}]$
			=	0.967	
Reinforcement required resis	ting bei	nding			
	As	=	M/[0.8	87fykz]	
		=	33.7x1	0^6/(0.	87x400x0.967x181)
Area of steel for bending	As	=	553.29	9 mm2	
Minimum area of steel	As,mi	n	\geq	0.26 fc	$\operatorname{ctm}/\operatorname{fyk} b d \ge 0.0013 b d$
fct,eff	=	fctm		[EN-1	992-1-1: (9.1N)]
	=	0.3fck	0.67		
	=	2.5226	683616	MPa	
As,mir	ı	=	296.79	37275	> 235.3 mm2
Area of steel for required	Areq	=	553.29	9 mm2	
Spacing of bars required	Sreq	=	90.802	29175	mm
Maximum spacing of bar	Smax	=	$3h \le 4$	00mm	[EN-1992-1-1: 9.3.1.1(3)]
		=	400	mm	
Provided spacing of bar		=	70	mm	
	Hence	e safe			
Provided area of steel	As,pro) =	717.72	2 mm2	
TOP REINFORCEMENT [F	IELD N	MOME	T]		[EN-1992-1-1: 9.2.1.1]
Diameter of bar for bending		ф	=	8	mm
Design bending moment at U	ILS	М	=	26	kNm/m
		k	=	M/bd2	fck <0.167
			=	0.034	
Calculation of lever arm		Z/d	=	0.5[1+	-√(1-3k/ŋ)]
			=	0.5 x [$[1+\sqrt{(1-(3x0.034/1))]}]$

			=	0.974	
Reinforcement required resis	sting ber	nding			
		As	=	M/[0.8	7fykz]
			=	26x104	\6/(0.87x400x0.974x181)
Area of steel for bending		As	=	423.8	mm2
Minimum area of steel	As,mi	n	\geq	0.26 fc	tm / fyk b d \ge 0.0013 b d
	fct,eff	=	fctm		[EN-1992-1-1: (9.1N)]
		=	0.3fck	0.67	
		=	2.5226	683616	MPa
As,min	=	296.79	37275	>	292.5 mm2
Area of steel for required	Areq	=	423.8	mm2	
Spacing of bars required	Sreq	=	118.54	64842	mm
Maximum spacing of bar	Smax	=	$3h \le 4$	00mm	[EN-1992-1-1: 9.3.1.1(3)]
		=	400	mm	
Provided spacing of bar		=	140	mm	
		Hence	safe		
Provided area of steel	As,pro) =	358.86	5 mm2	

EFFECTIVE DEPTH TO RESIST BENDING

Required effective thickness of slab to resist bending

dreq = $\sqrt{(M/kbfck)}$ = $\sqrt{[33.7x10^{6}/(0.167x1000x24)]}$ = 91.69614841 mm < dpro

Hence provided wall thickness is sufficient to resist compression due to bending

5.4 DESIGN FOR SHEAR AT BASE

Check the adequacy of the thickness to resist shear

Client: Czech Development Agency.....

Design shear force at base

VED	=	48.375	5 kN			
Lever arm, approximately	Z	=	0.98d			
		=	177.38	mm		
	v1	=	0.6(1-1	fck/250)		
		=	0.5424	Ļ		
For non-pre-stressed structur	es					
		αcw	=	1		
Conservatively assume cot	=1					
Crushing strength of the con-	crete dia	agonal s	trut		[EN-1992-1-1: (6.9)]	

VRD,max = $0.9d \alpha cwb^{v}1 fcd/(cot\Theta+tan\Theta)$ = 600.827328 kN > VED

Hence the provided thickness is sufficient to resist compression due to shear

Check whether shear reinforcement can be avoided [EN-1992-1-1: 6.2.2 (1)]

CRd,c	=	0.18/yc=	0.18/1.	5	
	=	0.12			
k	=	$1 + \sqrt{(200/d)} \le 2$	2.0		
	=	1+\sqrt{200/181}			
	=	2.051176662	>	2	
	=	2			
100pl	=	100 Asl/bd ≤2			
=		$100x717.72/(1000x181) \leq 2$			
	=	0.396530387	\leq	2	
	=	0.4			
Vmin	=	0.035K1.5√fcl	ĸ	[EN-1992-1-1: 6.3N]	
	=	0.035x2^1.5x ⁻	√(24)		
	=	0.484974226			

<u>Client: Czech Development Agency</u>.....^L The shear capacity of the concrete without any shear reinforcement

		[EN-19	992-1-1	: 6.2a]	
VRd,c =	CRd,cK[100pl fck]1/3bd \geq Vmin bd				
=	0.12x2	x(0.4x2	24)^(0.3	4)x1000x181/	1000
=	92.33	kN	>	87.78033493	kN
=	87.780	33493	kN		
VRd,c >	VRE				

Hence the provided depth is sufficient to resist tension due to shear without shear reinforcement

fixed edges

8mm dia. @70mm c/c

6 CHECK FOR BASE PRESSURE

Consider 1m Width of slab	b	=	1000	mm
Overall thickness of wall provided	hpro	=	0.18	m
Inner diameter of tank	Di	=	5.65	m
Outer diameter of tank	Do	=	6.01	mm
Total height of the tank	Н	=	2.7	m
Thickness of top slab	ht	=	0.18	m
Diameter of top slab	Dt	=	6.01	
Thickness of bottom slab	hb	=	0.225	m
Diameter of bottom slab	Db		6.61	
Dead load				
Self weight of top slab	=	127.59	942533	kN

Self weight of bottom slab	=	192.92	79291	kN	
Self weight of circular wall	=	222.42	033	kN	
Total dead load	=	542.94	25123	kN	
Water load					
Total weight of water	=	676.59	73875	kN	
Live load	=	28.354	2785	kN	
Total load					
Total load due to DL,WP & LL	Р	=	1247.8	394178	
Base Pressure					
Area of base	А	=	34.298	32985	m2
Base pressure due to the total load		=	P/A		
	σ	=	36.383	855933	kN/m2
Allowable Safe bearing capacity of s	soil at si	te			
	σSBC	=	100	kN/m2	
		>	36.383	855933	kN/m2

Hence safe

ANNEXURE-III HYDRAULIC ANALYSIS/ WATER CAD REPORT

No.	CONTENT	DESCRIPTION		
	I. GRAVITY DISTRIBUTION PIPE NETWORK			
1	HY-WCAD-001-A	PIPE NETWORK PREVIEW		
2	HY-WCAD-001-B	SCENARIO SUMMARY REPORT		
3	HY-WCAD-001-C	JUNCTION TABLE		
4	HY-WCAD-001-D	PIPE TABLE		
5	HY-WCAD-001-E	PRV TABLE		
6	HY-WCAD-001-F	TANK TABLE		
7	HY-WCAD-001-G	PIPES INVENTORY		

1 HY-WCAD-001-A PIPE NETWORK PREVIEW

Scenario: Base

awayo keraro WCAD.wtg 11/14/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 05795 USA +1-203-755-1665 Bentley WaterCAD V8i (SELECTseries 6) [08.11.06.58] Page 1 of 1

2. HY-WCAD-001-B

SCENARIO SUMMARY REPORT

Scenario Summary Report Scenario: Base

ID	1	
Label	Base	
Notes		
Active Topology	Base Active Topology	
Physical	Base Physical	
Demand	Base Demand	
Initial Settings	Base Initial Settings	
Operational	Base Operational	
Age	Base Age	
Constituent	Base Constituent	
Trace	Base Trace	
Fire Flow	BaseFireFlow	
Energy Cost	Base Energy Cost	
Transient	BaseTransient	
Pressure Dependent Demand	Base Pressure Dependent Demand	
Failure History	Base Failure History	
SCADA	Base SCADA	
User Data Extensions	Base User Data Extensions	
Steady State/EPS Solver Calculation Options	Base Calculation Options	
Transient Solver Calculation Options	Base Calculation Options	

Time Analysis Type	Steady State	Use simple controls during steady state?	True
Friction Method	Hazen- Williams	Is EPS Snapshot?	False
Accuracy	0.001	Start Time	12:00:00 AM
Trials	40	Calculation Type	Hydraulics Only

awayo keraro WCAD.wtg 11/14/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

3 HY-WCAD-001-C JUNCTION TABLE

Label	Demand (L/s)	Hydraulic Grade (m)	Pressure (m H2O)
100M3 RESEVIOR	3.50	2,190.80	165.47
ABST	0.50	2,233.57	18.54
AKST	0.25	1,947.84	29.78
ARWP5	0.82	1,867.87	32.80
BCWP3	0.82	1,848.68	65.55
DDST	0.25	2,247.08	34.01
DWP1	0.82	2,267.47	15.44
GGWP2	0.82	2,247.94	42.86
GWP1	0.82	2,235.18	5.17
J-2	0.00	2,225.02	74.87
J-4	0.00	2,200.27	72.13
J-5	0.00	2,218.92	38.84
MH-1	0.00	2,235.85	2.85
MH-2	0.00	2,267.97	8.96
MH-3	0.00	2,248.65	37.57
MH-4	0.17	1,952.31	42.23
MH-5	0.00	1,948.34	49.24
MH-6	0.00	1,860.09	41.00
RCWP4	0.82	1,858.41	39.33
WWWP1	0.82	1,940.61	45.52
YWP2	0.82	1,945.61	42.53

FlexTable: Junction Table

awayo keraro WCAD.wtg 11/14/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

4. HY-WCAD-001-D PIPE TABLE

FlexTable: Pipe Table

Label	Length (Scaled) (m)	Start Node	Stop Node	Diameter (mm)	Material	Hazen- Williams C	Velocity (m/s)	Flow (L/s)
P-1	87	Godo Spring 1	WET WEEL	26.0	HDPE	150.0	1.42	0.75
P-2	60	Godo Spring 2	WET WEEL	26.0	HDPE	150.0	1.32	0.70
P-3	1,449	Dasa Dashole Spring	WET WEEL	51.4	HDPE	150.0	1.05	2.19
P-4	74	WET WEEL	MH-1	51.4	HDPE	150.0	0.64	1.32
P-5	60	MH-1	GWP1	40.8	HDPE	150.0	0.63	0.82
P-6	508	MH-1	ABST	40.8	HDPE	150.0	0.38	0.50
P-7	60	Dasa Dashole Spring	MH-2	51.4	HDPE	150.0	0.91	1.89
P-8	45	MH-2	DWP1	40.8	HDPE	150.0	0.63	0.82
P-9	1,053	MH-2	MH-3	40.8	HDPE	150.0	0.82	1.07
P-10	63	MH-3	GGWP2	40.8	HDPE	150.0	0.63	0.82
P-11	43	MH-3	DDST	20.4	HDPE	150.0	0.76	0.25
P-13	655	J-2	J-5	73.6	HDPE	150.0	0.82	3.50
P-14	2,003	J-5	J-4	73.6	HDPE	150.0	0.82	3.50
P-17	123	MH-4	AKST	20.4	HDPE	150.0	0.76	0.25
P-18	1,043	MH-4	WWWP1	40.8	HDPE	150.0	0.63	0.82
P-19	199	MH-4	MH-5	61.4	HDPE	150.0	1.11	3.28
P-20	243	MH-5	YWP2	40.8	HDPE	150.0	0.63	0.82
P-23	150	MH-6	RCWP4	40.8	HDPE	150.0	0.63	0.82
P-36	334	100M 3 RESERVOIR	10M3 PBT	90.0	HDPE	150.0	0.71	4.52
P-37	13	10M3 PBT	MH-4	90.0	HDPE	150.0	0.71	4.52
P-42	1,233	WET WEEL	J-2	73.6	HDPE	150.0	0.82	3.50
P-48	1,017	J-4	100M3 RESEVIOR	73.6	HDPE	150.0	0.82	3.50
P-79	1,017	MH-6	BCWP3	40.8	HDPE	150.0	0.63	0.82
P-80	300	MH-5	PRV-1	51.4	HDPE	150.0	0.79	1.64
P-81	429	PRV-1	MH-6	51.4	HDPE	150.0	0.79	1.64
P-82	350	MH-5	PRV-2	40.8	HDPE	150.0	0.63	0.82
P-83	586	PRV-2	ARWP5	40.8	HDPE	150.0	0.63	0.82

awayo keraro WCAD.wtg 11/14/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Client: Czech Development Agency.....

5. HY-WCAD-001-E PRV TABLE

FlexTable: PRV Table										
ID	Label	Elevation (m)	Diameter (Valve)	Flow (L/s)	Hydraulic Grade (From)	Hydraulic Grade (To)	Headloss (m)			
			(mm)	(-1-7	(m)	(m)	1			
105	10M3 PBT	1,952.39	90.0	4.52	2,023.62	1,952.39	71.24			
180	MH-8 PRV-1	1,865.72	51.4	1.64	1,944.40	1,865.72	78.67			
183	MH-7 PRV-2	1,874,44	40.8	0.82	1,944,42	1,874,44	69.98			

awayo keraro WCAD.wtg 11/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley WaterCAD V8i (SELECTseries 6) [08.11.06.58] Page 1 of 1

6. HY-WCAD-001-F TANK TABLE

FlexTable: Tank Table

ID	Label	Elevation (Base) (m)	Elevation (Minimum) (m)	Elevation (Initial) (m)	Elevation (Maximum) (m)	Flow (Out net) (L/s)	Hydraulic Grade (m)
81	100M 3 RESERVOIR	2,025.00	2,025.30	2,025.50	2,028.50	6.52	2,025.50
82	50M3 WET WEEL	2,236.00	2,236.30	2,236.50	2,238.50	3.18	2,236.50

awayo keraro WCAD.wtg 11/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

7. HY-WCAD-001-G PIPES INVENTORY

	Pre	ssure Pipes	Inventory
Diameter (mm)	Length (HDPE) (m)	Length (All Materials) (m)	Volume (m³)
20.4	166	166	0.05
26.0	147	147	0.08
40.8	5,118	5,118	6.69
51.4	2,311	2,311	4.80
61.4	199	199	0.59
73.6	4,908	4,908	20.88
90.0	348	348	2.21
All Diameters	13,197	13,197	35.30

awayo keraro WCAD.wtg 11/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

I. Baseline data

1. What is the existing main source of water?

 \circ Hospital

	0	Borehole	№	•••••	•••	Dischar	ge
	0	Hand pump	№			Dischar	ge
	0	Well	№			Dischar	rge
	0	Other	№		••••	Discha	rge
2.	Conne	ection profile					
	0	House connec	tion (H	C)			
	0	Yard connecti	ion (YC	O)			
	0	Yard connecti	ion (YC	S)			
	0	Public tap cor	nnection	(PTC)			
3.	How r	nany religious i	instituti	ons are	there?		
	0	Orthodox chu	rches,	№	••••	No of	members
	0	Protestant chu	irches,	№		No of	members
	0	Mosques,		№		No of	members
4.	Non-re	esidential dema	nds				
	0	Hotels, restau	rants &	bars	№	•••••	№ of users/day
	0	Offices			№		№ of users/day
	0	Factory			№		№ of employees
5.	What	is the number o	f livesto	ock?			
	(cattle's		№			
	0 5	Sheep's & goat	's	№r			
6.	Types	of cash cops?					
7.	Schoo	ls?					
	o P	rimary schools,	№		Nº s	tudents	& staff
	o S	econdary schoo	ols	№		№ c	of students & staff
8.	How r	nany health cer	nters?				
	C	Health post,	№ of	beds		•••••	
	(o Clinic	№ of	beds			

№ of beds.....

Client: Czech Development Agency.....

- 9. Types ethnic groups in the community?
 - \circ Sidama
 - \circ Oromia
 - o Amhara
 - 0 Wolayita
 - o Gurage
 - $\circ\,\mathrm{Gamo}$
 - 0 Tigiria
 - \circ Other
- 10. Distance from "Hawassa"(the regional capital)
 - o Asphalt roadkm
 - o Gravel roadkm
 - $\circ \ \ Mud\ road \qquad \dotskm$
- 11. Population
 - o Total
 - o Male
 - o Female

II. Current Demand assessment

- 1. Are you satisfied with the current water supply situation?
- 2. How much water, from the main source above, does your family use per day in average in Dry Season and Rain Season, respectively?
- 3. What is your perception on water quality of the main source?
- 4. How far is the main water source from your house?
- 5. How often does your family fetch water from the main source?
- 6. Is the quantity of water adequate for daily consumption?
- 7. Is water available throughout the year?

ANNEXURE V

SUMMARY OF WATER DEMAND

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report Client: Czech Development Agency.....

		D				
Description	Unit	Base Populati on	Constructio n Period	Deign Period		d
Year		2019	2020	2025	2030	2035
Population Growth Rate		3%	3%	3%	3%	3%
Per Capita Demand	l/c/d	25.00	25.00	25.00	25.00	25.00
Projected/Forecasted population	No.	6,150	6,335	7,343	8,513	9,869
Domestic water	m ³ /d	153.75	158.36	183.59	212.83	246.72
demand(DWD)	l/s	1.78	1.83	2.12	2.46	2.86
Socio -Economic Factor		0.90	0.90	0.90	0.90	0.90
Climatic Factor		1.00	1.00	1.00	1.00	1.00
Adjusted Domestic Water Demand (AJDD)	m ³ /d	138.38	142.53	165.23	191.54	222.05
$[DWD^*(a)^*(b)]$	l/s	1.60	1.65	1.91	2.22	2.57
Institutional Water Demand; Health centers & schools. (13.75 % of AJDD)	m ³ /d	19.03	19.60	22.72	26.34	30.53
Livestock water Demand (0% of AJDD)	m ³ /d	0.00	0.00	0.00	0.00	0.00
Total Adjusted Water	m ³ /d	157.40	162.12	187.95	217.88	252.58
Demand (TAD) [(AJDD) + (c) + (d)]	l/s	1.82	1.88	2.18	2.52	2.92
Percent of non -Revenue - Water (15-25% of TAD)	%	15%	15%	15%	15%	15%
Non -Revenue -Water	m ³ /d	23.61	24.32	28.19	32.68	37.89
(15% of TAD)	l/s	0.27	0.28	0.33	0.38	0.44
Average Day Water Demand(ADD)	m³/d	181.01	186.44	216.14	250.56	290.47
[TAD + (e)]	l/s	2.10	2.16	2.50	2.90	3.36
Maximum day Factor (1.2*ADD)		1.15	1.15	1.15	1.15	1.15
Maximum daily demand	m ³ /d	208.16	214.41	248.56	288.15	334.04

(MDD) [Maximum day Factor *ADD]	l/s	2.41	2.48	2.88	3.34	3.87
Peak Hour Factor		2	2	2	2	2
Peak Hour demand (PHD)	m ³ /d	416.33	428.82	497.12	576.29	668.08
[Peak Hour Factor *MDD]	l/s	4.82	4.96	5.75	6.67	7.73
Water production from existing Source(Wet-Well)	1/s	3.75	3.75	3.75	3.75	3.75
New Plan Water source	1/s					0.12
Reservoir Capacity (1/3 of ADD)	m ³	60.34	62.15	72.05	83.52	96.82
Adopted Reservoir capacity(m ³)	m ³	50	50	100	100	100

Client: Czech Development Agency.....

ANNEXURE VI ENVIRONMENTAL AND SOCIAL SCREENING

Name of the project: 'Awayo Keraro Kebele' Community Water Supply and Sanitation Project

Program: "Improving Quality of Life by Ensuring Availability and Sustainable Management of Water Resources in 'Sidama' Zone"

Project Area: 'Bona Zuria Woreda', 'Sidama' Zone, South Nations Nationalities and People Regional State (SNNPRS), Ethiopia

Client: Czech Republic-Czech Development Agency

Consultant: HY Engineering consultancy Plc

Approving authority: 'Sidama' Zones Water, Mines and Energy Department (SZWMED)

Part A: Brief Description of the project

The project is located in SNNPRS, 'Sidama Zone', 'Dale Woreda', 'Awayo Keraro Kebele' at about 390 kilometers (Km) far from 'Hawassa' (the regional capital). The detail study and design of new water supply and sanitation project is aimed to alleviate the prevailing critical potable water supply shortage and improve the living conditions of inhabitants by constructing water supply system through identification of the safe water source, cost effective and affordable water source design, as well as establishing and providing capacity building for user community. The project will consists of borehole drilling and construction (constructed), pipe laying works, construction of reservoir, valve chambers, manhole and water point to ensure better water supply coverage. The proposed water supply scheme will cover for demand up to the year 2039.

The proposed scheme will consists of:

- 3 spring capping structures
- Construction 100m³ RCC concrete reservoirs & 50m³ RCC concrete wet well
- Laying different diameter distribution networks
- Construction of eight water points & three school tap
- Construction two valve chamber in reservoir, six manhole in pipe networks

Part B: Brief Description of the Environmental situation and identification of the environmental and social Impacts

Environmental sensitive area or threatened species

Are there any environmentally sensitive area or threatened species (specify below) that could adversely affected by the program?

I. Intact natural forest: Yes _____No $_{\underline{\sqrt{}}}$

II. Forest: Yes _____No $_{\underline{\checkmark}}$

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report
Client: Czech Development Agency.
III. Surface water courses, natural springs: YesNo_ $\underline{\vee}$
IV. Wethands (lakes, rivers, swamp, seasonally inundated areas): i esNo
V. How far the nearest wetland (lakes, rivers, seasonally inundated areas)?
<u>O.5Km from Borehole drilling and construction site</u>
VI. Area of the high biodiversity: YesNo_ $\underline{\mathbb{V}}$
VII. Habitat of endangered/threatened, or rare species for which protection is required under
Ethiopian national law/local law and/or international agreements: YesNo
VIII. Others (describe): Yes No_ $$
Rivers and Lake Ecology
Is there possibility that, due to construction and operation of the program, the rivers and lakes
ecology will be adversely affected? Attention should be paid to water quality and quantity; the
nature, productivity and use of aquatic habitats, and variations of these over time.
YesNo $$
Comments: There is no any ecology and rivers affected by the implementation of sub-program
Site Hydrogeology (According to available information)
Type of aquifer: (Continuous, <u>fracture</u>)
Depth of aquifer: relatively found at optimum depth
Seasonal fluctuations: there exists slight seasonal fluctuation of water levels
Known quality problems: <u>None</u>
Surface water
What is the water course in the surrounding of the site? Surface water
Nature (River, Stream, spring, Lake): Stream Water
Give an assessment of potential water course sensitive to water point construction and operation:
There is no sensitive water course due to the construction and operation of the project
Drainage conditions on site
Description of present Drainage conditions on site (site topography, infiltration capacity of soil):
The site is located on sloppy topography, hence the project area is well drained and has a
medium infiltration capacity as result there is no observed drainage problem.
Risks of Water retention (Site in low point): There is no risk of water retention.
Feasibility of simple drainage improvement to eliminate water retention problems: not needed.
Water use and water users
Describe water use in the vicinity of the site: <u>the surface water in the project locality is used for</u>

H VENGINEERING PLC 'Awayo Keraro Kebele' Water Supply Project Detailed Design Report Client: Czech Development Agency..... cloth washing, bathing and animal watering only. Is there potential for conflict between users, if so how should be this conflict be solved? No potential for conflict anticipated in water use within the community. Protected area Does the sub-program area (or component of sub-program) occur within /adjacent to any protected areas designated by government (National park, National reserve, World heritages site)? Yes <u>No</u> $\sqrt{}$ If the program is outside of, but close to any protected area, is it likely to adversely affect the ecology within the protected area'(e.g., interference with the mitigation routes of mammals or birds). Yes No $\sqrt{}$ Contamination and pollution Hazards Is there a possibility sub program that the sub program will be at risk of contamination and pollution hazards (from latrines, dump sites, industrial discharges, drilling oils etc)? Yes No $\sqrt{}$ Landscape / aesthetics Is there possibility that the program will adversely affect the aesthetic attractiveness of the local land escape? Yes _____No $\sqrt{}$ Historical, Archaeological or cultural heritage site Could sub program alter any historical, archeological, cultural heritage tradition (sacred, ritual areas) site, cemetery, graves, or required excavation? Yes _____No $\sqrt{}$ Resettlement and/or land Acquisition Will involuntary resettlement and acquisition, relocation of property, or loss, denial or restriction of access to land and other economic resources be caused by program implementation? Yes No $\sqrt{}$ Loss of Crops, Fruit Trees and Households infrastructures Will the program result in the permanent or temporary loss of crops, fruits trees and household infrastructure (such as granaries, outside toilets and kitchens, livestock shed etc)? Yes No $\sqrt{}$ Block of access and routes or disrupt normal operations in the general area Will the program or block access, routes etc (for people, livestock and wild life) or traffic routing and flows? Yes _____No $\sqrt{}$ Degradation and/ or depletion of resource during construction and operation

'Awayo Keraro Kebele' Water Supply Project Detailed Design Report		. c .
Client: Czech Development Agency.		J TM
Will the program involve use of considerable amount of natural resource (Construct	ion mate	rial,
water spillage, land, energy from biomass etc.) Or may lead to their depletion or de	egradatio	n at
point of source? YesNo		
Will the quarries have to be rehabilitated? No need of acquiring a quarry	site and	no
rehabilitation is needed.		
Solid or liquid Wastes		
Will the program generate solid or liquid wastes? (Including human excreta/sewa	ges, hosj	pital
waste,) YesNo_ $$		
If "yes,""does the sub-program include a plan for their adequate collection and dispo	sal?	
YesNo		
Public Health		
Will the sub program contributes to increase in malaria due to increase in water supp	ly?	
YesNo√		
Comments: The program has positive contribution for the improvement of the comm	<u>nunity he</u>	<u>alth</u>
and well-being due to safe and adequate water supply provision. Also, there is no	o anticipa	ated
adverse effect because of program implementation.		
Part C: Social Safeguards Screening Format		
	T 7	ЪT

S/N	Social safeguards screening information	Yes	No
1	Will the sub project reduce other people access to their economic resource,		✓
	like land, pasture water, public services or other resources that they depend		
	on?		
2	Will the project result in resettlement of or individuals or families or require		✓
	the acquisition of land (public or private temporarily or permanently) for its		
	development?		
3	Will the project result in the temporary or permanent loss of crops, fruits		✓
	trees and Households infrastructure (such as granaries, outside toilets and		
	kitchens, etc)?		
4	Will the project require excavation near any historical, Archeological or		✓
	cultural heritage site?		
5	Might the project adversely affect vulnerable people (e.g elderly poor		✓
	pensioners, physically challenged, Women, particularly Head of Households		

Client: Czech Development Agency.....

or widows etc) living in the area?

For all issues indicated by "Yes "the applicants is expected to explain how she or he intended to mitigate them. Implementation of the mitigation measures will require using the RPF

Public Consultation

Has public Consultation and participation been sought? Yes $\sqrt{}$ No_____

Sub Program categorization (Tick application box)

- A. Category A: This sub program has been categorized as A (schedule 1) due to one or more major adverse impacts and therefore cannot be funded under the WaSH II program. It will be either re designed and re-summated to the environmental screening process after re design, or abandoned.
- **B.** Category B: This sub program has been categorized as B (schedule 2) due to potential environmental issue identified which can be mitigated as follows:
- B1. Category B1 No farther Environmental Assessment work required; application of mitigation measures as outlined in the ESMF
- B2. Category B1 Farther Environmental Assessment work required: Preparation of separate ESIA to get better understanding of the potential environment and social issues that have been identified in the screening processes and develop a specific Environmental and Social management plan.
- C. Category C: No significant Environmental issues identified, no specific mitigation required; sub-program implementation can proceed. Environmental Guidelines for construction contractors shall be appended to construction contract and applied.

H VENGINEERING PLC.

REMENT OF CONSULTANCY ON

9 .TM

6

SPECIFIC LOCATION OF SYSTEM COMPONENTS

Client: Czech Development Agency.....

'Total Station' survey report								
	Specific Location (UTM 37N)							
Station No.	Easting	Northing	Elevation	Label				
	(m)	(m)	(m)					
1	709983	465118	2233	BM1				
2	709971.4	465143.3	2231.034	BM2				
3	465135.7	709935.2	2241	GM1				
4	465101.7	709917.4	2244	GM2				
5	465142.6	709994.6	2236	WWG				
6	710006.6	465214.4	2229.475	JC				
7	465171.8	710052	2230	GWP1				
8	465719	710070.5	2215	ABST				
9	466434.8	709339.9	2269	DDM				
10	466430	709444.6	2252	DWP1				
11	467499.8	709549.9	2213	AKST				
12	46524.39	710025	2231	MH-1				
13	466428.6	709399.5	2259	MH-2				
14	467466.3	709577.1	2211	MH-3				
15	470316.7	709831.2	1910	MH-4				
16	470514.7	709848.4	1899	MH-5				
17	471240.7	709915	1819	MH-6				
18	469969.9	709856.7	2025	AK 100m ³ Reservoir				
19	467425.6	709625.2	2205	GGWP2				
20	469751.9	708954.2	1895	WWWP1				
21	470311.2	709708.4	1918	ABST2				
22	470560.7	709609.5	1903	YWP2				
23	472023.7	709259.8	1783	BCWP3				
24	471194.3	710057.5	1819	RCWP4				