Kupní smlouva (dále jen **"Smlouva"**) uzavřená v souladu s ustanovením § 2079 a násl. zákona č. 89/2012 Sb., občanský zákoník (dále jen "**OZ**") ## 1. <u>SMLUVNÍ STRANY</u> ## 1.1 Fyzikální ústav AV ČR, v. v. i., se sídlem: Na Slovance 1999/2, 182 00 Praha 8, jednající: RNDr. Michael Prouza, Ph.D., ředitel, zapsaný v rejstříku veřejných výzkumných institucí Ministerstva školství, mládeže a tělovýchovy České republiky. IČO: 68378271 DIČ: CZ68378271 Bankovní spojení: Číslo účtu: (dále jen "**Kupující**") а ## 1.2 TESTOVACÍ TECHNIKA s.r.o., se sídlem Československé armády 923, 290 01 Poděbrady, jednající: Ing. Bohumil Kvapil, jednatel, zapsaná v obchodním rejstříku, vedena u Městského soudu v Praze, oddíl C, vložka 72744. IČO: 26129507 DIČ: CZ26129507 Bankovní spojení: Číslo účtu: (dále jen "**Prodávající"**), (dále společně jen "Smluvní strany" nebo každý z nich samostatně jen "Smluvní strana"). ## 2. ZÁKLADNÍ USTANOVENÍ - 2.1 Kupující je účastníkem projektu reg. č. CZ.02.01.01/00/22_008/0004632 s názvem "Výzkum základních stavebních kamenů hmoty s využitím špičkových technologií" (dále jen "Projekt") v rámci Operačního programu Jan Amos Komenský (dále jen "OP JAK"), pro nějž je předmět plnění dle této Smlouvy určen a z jehož podpory je financován. - 2.2 Prodávající je vybraným dodavatelem zadávacího řízení k veřejné zakázce malého rozsahu na dodávky vyhlášeného Kupujícím pod názvem "**Osciloskop se šířkou pásma 1 GHz**" (dále jen "**Zadávací řízení"**) na dodání předmětu plnění dle Smlouvy. - 2.3 Výchozími podklady pro dodání předmětu plnění dle Smlouvy jsou - 2.3.1 **Technické specifikace** předmětu plnění jako **Příloha č. 1** - 2.3.2 Nabídka Prodávajícího podaná v rámci Zadávacího řízení v rozsahu té části, která předmět plnění technicky popisuje (dále jen "**Nabídka**") jako **Příloha č. 2**. V případě kolize Smlouvy a některé z Příloh nebo Příloh Smlouvy navzájem má přednost technický požadavek vyšší úrovně a jakosti nebo ustanovení výhodnější pro Kupujícího. - 2.4 Prodávající prohlašuje, že disponuje veškerými odbornými předpoklady potřebnými pro dodání předmětu plnění, k činnosti dle Smlouvy je oprávněn a na jeho straně neexistují žádné překážky, které by mu bránily předmět plnění dle Smlouvy dodat. - 2.5 Prodávající bere na vědomí, že dodání předmětu plnění ve stanovené době a kvalitě, jak vyplývá z Příloh č. 1 a 2 Smlouvy (včetně vyúčtování), je pro Kupujícího zásadní. V případě, že Prodávající nesplní smluvní požadavky, může Kupujícímu vzniknout škoda. ## 3. PŘEDMĚT SMLOUVY 3.1 Předmětem této Smlouvy je závazek Prodávajícího dodat Kupujícímu #### osciloskop se šířkou pásma 1 GHz specifikovaný v Přílohách č. 1 a 2 této Smlouvy (dále jen "**Zařízení"**) a převést na Kupujícího vlastnické právo k Zařízení a závazek Kupujícího Zařízení převzít a zaplatit Prodávajícímu sjednanou cenu. - 3.2 Součástí plnění je: - 3.2.1 doprava Zařízení dle Příloh č. 1 a 2 této Smlouvy do místa plnění, - 3.2.2 dodání instrukcí a návodů k obsluze a údržbě Zařízení v českém nebo anglickém jazyce Kupujícímu, a to v elektronické nebo tištěné podobě, - 3.2.3 záruční servis, - 3.2.4 zajištění technické podpory. - 3.3 Prodávající odpovídá za to, že Zařízení bude v souladu s touto Smlouvou včetně Příloh, platnými technickými a kvalitativními normami a že jej Kupující bude moci užívat k danému účelu. V případě kolize norem platí vždy norma nebo ta její část, v níž jsou stanovena přísnější kritéria. - 3.4 Zařízení a všechny jeho součásti musí být nové, nepoužité. ### 4. **DOBA PLNĚNÍ** - 4.1 Prodávající se zavazuje Zařízení dodat dle článku 9. Smlouvy **do 3 měsíců** ode dne uzavření Smlouvy. - 4.2 Doba plnění se prodlužuje o dobu, po kterou Prodávající nemohl plnit z důvodů překážek na straně Kupujícího; prodloužení Smlouvy z důvodů překážek na straně Kupujícího však nezakládá právo na náhradu nákladů či jakékoliv jiné nároky Prodávajícího. #### 5. CENA, FAKTURACE, PLACENÍ - 5.1 Kupní cena vychází z Nabídky a činí **749 000,- Kč** (slovy: sedmsetčtyřicetdevěttisíc Korun českých) bez daně z přidané hodnoty (dále jen **"Kupní Cena"**). - 5.2 Kupní Cena zahrnuje veškeré plnění Prodávajícího směřující ke splnění požadavků Kupujícího dle této Smlouvy, včetně veškerých poplatků, cla, pojištění, nákladů na dopravu apod. - 5.3 Kupní Cenu je Prodávající oprávněn fakturovat po řádném odevzdání Zařízení dle čl. 9. Smlouvy, v případě dodání s vadami nebo nedodělky dle odst. 9.4 Smlouvy pak teprve po jejich odstranění. Daň z přidané hodnoty vypořádají Smluvní strany dle platných českých právních předpisů. - 5.4 Daňové doklady faktury vystavené Prodávajícím na základě této Smlouvy musí obsahovat všechny náležitosti stanovené zákonem č. 235/2004 Sb., o dani z přidané hodnoty, v platném znění, číslo této Smlouvy a údaj o tom, že Zařízení je dodáváno pro účely projektu "Výzkum základních stavebních kamenů hmoty s využitím špičkových technologií", reg. č. CZ.02.01.01/00/22_008/0004632. - 5.5 Kupující preferuje elektronickou fakturaci na elektronickou adresu <u>efaktury@fzu.cz</u>. Vystavené faktury nesmí být v rozporu s mezinárodními dohodami o zamezení dvojího zdanění, budou-li se na konkrétní případ vztahovat. - 5.6 Lhůta splatnosti daňových dokladů je třicet (30) dnů od data jejich doručení Kupujícímu. Zaplacením účtované částky se rozumí den jejího odeslání na účet Prodávajícího. - 5.7 Pokud faktura nebude vystavena v souladu s platebními podmínkami stanovenými Smlouvou nebo nebude splňovat požadované zákonné náležitosti, je Kupující oprávněn ji Prodávajícímu vrátit jako neúplnou k doplnění, resp. nesprávně vystavenou k novému vystavení, a to ve lhůtě pěti (5) pracovních dnů od data jejího doručení Kupujícímu. Kupující přitom není v prodlení s úhradou Kupní Ceny nebo její části. Nová lhůta splatnosti začne plynout dnem doručení opravené nebo nově vyhotovené faktury Kupujícímu. - 5.8 Kupující je oprávněn pozastavit či jednostranně započítat proti pohledávkám Prodávajícího kteroukoli z plateb z důvodu: - 5.8.1 škody způsobené Prodávajícím, - 5.8.2 smluvní pokuty. - 5.9 Prodávající není oprávněn započítat žádnou svou pohledávku proti pohledávce Kupujícího z této Smlouvy. #### 6. VLASTNICKÉ PRÁVO Vlastnické právo k Zařízení a zároveň i související nebezpečí škody přechází na Kupujícího řádným odevzdáním Zařízení dle čl. 9. Smlouvy. #### 7. MÍSTO PLNĚNÍ Místem plnění je místo dodání Zařízení, tj. sídlo Kupujícího na adrese Na Slovance 1999/2, 182 00 Praha 8. ## 8. SOUČINNOST SMLUVNÍCH STRAN - 8.1 Prodávající se zavazuje upozornit Kupujícího na případné překážky na své straně, které mohou negativně ovlivnit řádné dodání (odevzdání) Zařízení. - 8.2 Prodávající se zavazuje poskytnout Kupujícímu součinnost v případě kontrol oprávněných subjektů v souvislosti s Projektem. ## 9. DODÁNÍ, ODEVZDÁNÍ - 9.1 Prodávající na své náklady Zařízení zabalí a přepraví jej do místa plnění dle článku 7. Je-li dodávka neporušená, vystaví Kupující Prodávajícímu dodací list. - 9.2 Součástí dodávky je technická dokumentace vztahující se k Zařízení, návodu k užívání, prohlášení o shodě dodaného Zařízení, všech jeho součástí a příslušenství se schválenými standardy. - 9.3 Prodávající splní svoji povinnost odevzdat Zařízení Kupujícímu jeho řádným dodáním do místa plnění. - 9.4 Kupující není povinen převzít dodávku vykazující zjevné vady (zejména porušený obal) nebo jiné vady, a to i v případě, že by samy o sobě ani ve spojení s jinými nebránily užívání Zařízení. V tomto případě vydá Kupující Prodávajícímu zápis o nepřevzetí Zařízení s uvedením důvodu. - 9.5 Odevzdání Zařízení nezbavuje Prodávajícího odpovědnosti za škody vzniklé v důsledku vad Zařízení. - 9.6 Smluvní strany považují za lhůtu přiměřenou pro kontrolu Zařízení Kupujícím za účelem přesvědčení se o jeho vlastnostech ve smyslu § 1914 OZ dobu 5 pracovních dnů následujících po dni jeho odevzdání. ## 10. ZAJIŠTĚNÍ TECHNICKÉ PODPORY Prodávající je povinen poskytovat Kupujícímu bezplatné konzultace a technickou podporu vztahující se k předmětu plnění po dobu trvání záruční doby, a to v českém i anglickém jazyce. Prodávající se zavazuje poskytnout Kupujícímu konzultace a technickou podporu vztahující se k předmětu plnění i v pozáruční době. ## 11. ZÁSTUPCI, OZNAMOVÁNÍ: 11.1 Prodávající zmocnil tyto zástupce odpovědné za dodávku Zařízení a komunikaci s Kupujícím: 11.2 Kupující zmocnil tyto zástupce odpovědné za převzetí Zařízení a komunikaci s Prodávajícím: - 11.3 Osoby dle odst. 11.1 a 11.2 lze změnit jednostranným písemným prohlášením Smluvní strany doručeným druhé Smluvní straně. - 11.4 Veškerá oznámení učiněná mezi Smluvními stranami podle této Smlouvy musí být vyhotovena písemně a doručena druhé Smluvní straně osobně (s písemným potvrzením o převzetí) nebo doporučeným dopisem (na adresu Kupujícího či Prodávajícího uvedenou v záhlaví Smlouvy) nebo elektronicky prostřednictvím datové schránky nebo e-mailem se zaručeným elektronickým podpisem na adresu epodatelna@fzu.cz v případě Kupujícího a teste@teste.cz v případě Prodávajícího. - 11.5 Ve věcech odborných nebo technických (oznámení potřeby záručního servisu apod.) je přípustná elektronická komunikace prostřednictvím osob dle odst. 11.1 a 11.2 na zde uvedené e-mailové adresy. ## 12. PŘEDČASNÉ UKONČENÍ SMLOUVY - 12.1 Kupující je oprávněn od Smlouvy odstoupit bez jakýchkoliv sankcí na jeho straně, nastane-li některá z níže uvedených skutečností: - 12.1.1 Prodávající nesplní lhůtu dle odst. 4.1 Smlouvy, - 12.1.2 při dodání Zařízení nebudou splněny technické parametry či podmínky dle požadované technické specifikace podle Příloh č. 1 a 2 a dle platných technických norem, - 12.1.3 vyjdou najevo skutečnosti svědčící o tom, že Prodávající nebude schopen Zařízení dodat. - 12.2 Prodávající je oprávněn od Smlouvy odstoupit v případě, že Kupující je v prodlení se zaplacením faktury delším než 2 měsíce s výjimkou případů, kdy Kupující nezaplatil fakturu z důvodu vady dodaného Zařízení nebo porušení Smlouvy Prodávajícím. - 12.3 Účinky odstoupení od Smlouvy nastávají dnem
doručení písemného oznámení jedné Smluvní strany o odstoupení od Smlouvy druhé Smluvní straně. Smluvní strana, které bylo před odstoupením od Smlouvy poskytnuto plnění druhou Smluvní stranou, toto plnění vrátí do 30 dnů ode dne odeslání vyrozumění o odstoupení odstupující Smluvní stranou, nestanoví-li odstupující Smluvní strana delší lhůtu. - 12.4 V případě předčasného ukončení Smlouvy je Prodávající povinen zajistit odvoz Zařízení z místa plnění ve lhůtě 30 dnů od data, kdy odstoupení od Smlouvy nabylo účinnosti. Kupující poskytne Prodávajícímu potřebnou součinnost obdobnou součinnosti při instalaci Zařízení. Náklady na odvoz hradí ta Smluvní strana, která porušením Smlouvy její předčasné ukončení způsobila. ## 13. POJIŠTĚNÍ, ODPOVĚDNOST ZA ŠKODU - 13.1 Prodávající se zavazuje pojistit Zařízení proti veškerým rizikům, a to alespoň ve výši Kupní Ceny a po dobu vymezenou zahájením přepravy až do odevzdání Kupujícímu. V případě porušení této povinnosti odpovídá Prodávající za vzniklou škodu. - 13.2 Prodávající odpovídá za škodu, kterou sám způsobí, rovněž odpovídá Kupujícímu za škodu, kterou způsobí třetí osoby, které Prodávající zavázal provést plnění dle této Smlouvy nebo jeho část. ## 14. ZÁRUKA, MIMOZÁRUČNÍ SERVIS - 14.1 Prodávající poskytuje Kupujícímu záruku za jakost Zařízení po dobu **12 měsíců**. - 14.2 Záruka za jakost počíná běžet dnem následujícím po řádném odevzdání Přístroje dle článku 9. Smlouvy. Záruka se nevztahuje na spotřební materiál. - 14.3 Prodávající se zavazuje zajistit bezplatný servis Zařízení prostřednictvím autorizovaných techniků a bezplatné pravidelné servisní prohlídky Zařízení v místě plnění v rozsahu stanoveném výrobcem po celou dobu záruční doby dle této Smlouvy, včetně oprav, dodávky náhradních dílů, dopravy a práce autorizovaného servisního technika. - 14.4 Zjistí-li Kupující na Zařízení závadu, vyzve Prodávajícího k jejímu odstranění prostřednictvím běžné elektronické zprávy odeslané na adresu: teste@teste.cz. - 14.5 Prodávající je povinen od odeslání výzvy dle předchozího odstavce - 14.5.1 do 24 hodin v rámci pracovních dnů navrhnout způsob odstranění závady, - 14.5.2 do 3 pracovních dnů zahájit záruční opravu, je-li to nutné. - 14.5.3 do 15 dnů závadu odstranit. - 14.6 V případě závady nikoli běžné je Prodávající povinen provést opravu v době odpovídající složitosti opravy. - 14.7 Náklady související se záruční opravou včetně přepravného a cestovného vždy hradí Prodávající. - 14.8 Opravené Zařízení předá Prodávající Kupujícímu na základě předávacího protokolu o opravě závady (dále jen "**Protokol o opravě závady"**) obsahujícího potvrzení obou Smluvních stran, že Zařízení bylo zbaveno závady. - 14.9 Pokud v průběhu provádění opravy, tj. před uplynutím 15. dne od odeslání výzvy dle odst. 14.4, Prodávající Kupujícímu s jeho souhlasem bezplatně poskytne za opravované Zařízení náhradní přístroj se stejnými nebo lepšími parametry, není v prodlení s dokončením záruční opravy. To platí po celou dobu poskytnutí náhradního přístroje. - 14.10 Na opravenou část Zařízení se vztahuje záruční doba dle odst. 14.1, která počíná běžet dnem odstranění závady dle Protokolu o opravě závady. - 14.11 Vykazuje-li Zařízení závady, pro které jej nelze prokazatelně užívat v plném rozsahu více jak 60 dnů (doba závad) během šesti nebo méně po sobě jdoucích měsíců záruční doby, je Prodávající povinen odstranit vadu dodáním nového Zařízení bez vady dle § 2106 odst. (1) písm. a) OZ, a to ve lhůtě 30 dnů ode dne odeslání výzvy k dodání, nedohodnou-li se Smluvní strany jinak. - 14.12 Prodávající se zavazuje zajistit mimozáruční servis v místě plnění včetně oprav, dodávky náhradních dílů a dopravy a práce servisního technika za cenu nepřevyšující cenu obvyklou, a to za podmínek dle odst. 14.4 a 14.5. 14.13 Prodávající se zavazuje, že po uplynutí záruční doby v případě požadavku Kupujícího zajistí servis Zařízení včetně oprav, dodávky náhradních dílů a dopravy a práce servisního technika za cenu nepřevyšující cenu obvyklou, a to alespoň do uplynutí 7 let ode dne odevzdání Zařízení. #### 15. <u>SMLUVNÍ POKUTY</u> - 15.1 Kupující je oprávněn uplatnit vůči Prodávajícímu smluvní pokutu ve výši 0,1 % z Kupní Ceny za každý započatý den prodlení s plněním povinností dle odst. 4.1 a 14.10 Smlouvy. - 15.2 Kupující má nárok na úhradu 2.000,- Kč za každý započatý den prodlení se zahájením záruční opravy dle odst. 14.5. - 15.3 Kupující má nárok na úhradu 3.000,- Kč za každý započatý den, po který nemohl Zařízení pro vadu podléhající záruční opravě používat, počínaje 16. dnem po uplatnění záruční vady. V případě, že byla v souladu s ustanovením odst. 14.5 stanovena na opravu vady nikoli běžné zvláštní lhůta, má Kupující nárok na úhradu 3.000,- Kč za každý den následující po uplynutí této zvláštní lhůty. - 15.4 V případě uplatnění důvodů pro odstoupení od Smlouvy dle odst. 12.1.2 je Kupující oprávněn uplatnit vůči Prodávajícímu smluvní pokutu ve výši 10 % Kupní Ceny. - 15.5 Pro případ prodlení s úhradou kterékoli splatné pohledávky (peněžitého dluhu) dle Smlouvy je prodlévající Kupující či Prodávající (dlužník) povinen zaplatit druhé Smluvní straně (věřiteli) úrok z prodlení v zákonné výši za každý započatý den prodlení. - 15.6 Smluvní pokuta je splatná do 30 dnů ode dne odeslání výzvy k zaplacení. - 15.7 Zaplacením smluvní pokuty nejsou dotčeny nároky Smluvních stran na náhradu škody, použití ustanovení § 2050 OZ je vyloučeno. - 15.8 Sluvní pokutu nelze uplatnit, je-li smluvní povinnost porušena v důsledku vyšší moci. #### 16. SPORY V případě sporu smluvních stran v souvislosti s touto smlouvou je místní příslušnost soudu určena sídlem Kupujícího. ## 17. MLČENLIVOST Smluvní strany prohlašují, že zachovají mlčenlivost o skutečnostech, které se dozvědí v souvislosti s touto Smlouvou a při jejím plnění a jejichž zpřístupnění by mohlo druhé Smluvní straně způsobit újmu. Tím nejsou dotčeny zákonné povinnosti Kupujícího. ## 18. ZÁVĚREČNÁ A JINÁ UJEDNÁNÍ - 18.1 Prodávající prohlašuje, že přejímá na sebe nebezpečí změny okolností ve smyslu ustanovení § 1765 odst. 2 OZ. - 18.2 Veškeré změny či doplnění Smlouvy lze učinit pouze na základě písemné dohody Smluvních stran, neumožňuje-li jednostrannou změnu Smlouva či právní předpis. - 18.3 Smlouva včetně všech příloh podléhá povinnosti uveřejnění v registru smluv v souladu se zákonem č. 340/2015 Sb., o zvláštních podmínkách účinnosti některých smluv, uveřejňování těchto smluv a registru smluv, v platném znění. Smluvní strany nepovažují žádné informace uvedené ve Smlouvě a jejích přílohách za obchodní tajemství ve smyslu § 504 OZ. Uveřejnění Smlouvy zajistí Kupující. - 18.4 Nedílnou součástí Smlouvy jsou tyto přílohy: Příloha č. 1: Technická specifikace Příloha č. 2: Nabídka Prodávajícího v rozsahu části, která technicky popisuje Zařízení 18.5 Smluvní strany prohlašují, že Smlouvu před jejím podepsáním přečetly, jejímu obsahu rozumí a s jejím obsahem souhlasí. Na důkaz souhlasu připojují Smluvní strany své podpisy. Za: Fyzikální ústav AV ČR, v. v. i. Za: TESTOVACÍ TECHNIKA s.r.o. 5. 4. 2024 2. 4. 2024 Jméno: RNDr. Michael Prouza, Ph.D. Jméno: Ing. Bohumil Kvapil Funkce: ředitel Funkce: jednatel ## Příloha č. 1 – Technická specifikace Zařízení (osciloskop) musí zahrnovat součásti a splňovat technické podmínky uvedené v této tabulce. | č. | Popis požadovaných bodů technické
specifikace Zařízení stanovené
Kupujícím | Popis a specifikace Zařízení nabízeného
Prodávajícím | Splňuje
ANO/NE | |----|--|---|-------------------| | 1 | šířka pásma alespoň 1 GHz | 1 GHz | ANO | | 2 | minimálně 6 kanálů | 6 kanálů | ANO | | 3 | podpora OS Linux | OS na Linuxovém jádře | ANO | | 4 | integrovaná paměť alespoň 60 Msa | 62,5 MSa/kanál | ANO | | 5 | pasívní sondy | 6x TPP1000 – 10:1, 1 GHz | ANO | | 6 | display alespoň 15" full HD | 15,6" full HD | ANO | Příloha č. 2 # Nabídka Prodávajícího v rozsahu části, která technicky popisuje Zařízení ## 5 Series B MSO Mixed Signal Oscilloscope Datasheet The largest display. The most channels. The greatest experience. ## Strength in numbers #### Input channels - 4, 6, or 8 FlexChannel® inputs - Each FlexChannel provides: - One analog signal that can be displayed as a waveform view, a spectral view, or both simultaneously - Eight digital logic inputs with TLP058 logic probe ## Bandwidth (all analog channels) 350 MHz, 500 MHz, 1 GHz, 2 GHz (upgradable) Sample rate (all analog / digital channels) Real-time: 6.25 GS/s Interpolated: 500 GS/s #### Record length (all analog / digital channels) - 62.5 Mpoints standard - 125, 250, 500 Mpoints, (optional)¹ #### Waveform capture rate >500,000 waveforms/s #### Vertical resolution - 12-bit ADC - Up to 16-bits in High Res mode #### Standard trigger types - Edge, Pulse Width, Runt, Timeout, Window, Logic, Setup & Hold, Rise/Fall Time, Parallel Bus, Sequence, Visual Trigger, Video (optional), RF vs. Time (optional) - Auxiliary Trigger ≤5 VRMS, 50Ω, 250 MHz (>200 mV_{pp}) (Edge Trigger only) #### Standard analysis - Cursors: Waveform, V Bars, H Bars, V&H Bars - Measurements: 36 - Spectrum View: Frequency-domain analysis with independent controls for frequency and time domains - FastFrameTM: Segmented memory acquisition mode with maximum trigger rate >5,000,000 waveforms per second - Plots: Time Trend, Histogram, Spectrum and Phase Noise - Math: Basic waveform arithmetic, FFT, and advanced equation editor - Search: Search on any trigger criteria - Jitter: TIE and Phase Noise #### 1 Optional and upgradable. ## Optional analysis¹ - Advanced Jitter and Eye Diagram Analysis - User-defined filtering - Advanced Spectrum View - RF vs. Time traces, triggers, Spectrograms, and IQ capture - **Digital Power Management** - Mask/Limit Testing - Inverters, Motors, and Drives - LVDS Debug and Analysis - PAM3 Analysis - Advanced Power Measurements and Analysis -
Advanced Vector Signal Analysis (SignalVu-PC) ## Optional protocol trigger, decode, and analysis¹ I²C, SPI, eSPI, I3C, RS-232/422/485/UART, SPMI, SMBus, CAN, CAN FD, LIN, FlexRay, SENT, PSI5, CXPI, Automotive Ethernet, MIPI C-PHY, MIPI D-PHY, USB 2.0, eUSB2, Ethernet, EtherCAT, Audio, MIL-STD-1553, ARINC 429, Spacewire, 8B/10B, NRZ, Manchester, SVID, SDLC, 1-Wire, MDIO, and NFC #### Optional serial compliance test¹ Ethernet, USB 2.0, Automotive Ethernet, Industrial Ethernet ## Arbitrary/Function Generator ¹ - 100 MHz waveform generation - Waveform Types: Arbitrary, Sine, Square, Pulse, Ramp, Triangle, DC Level, Gaussian, Lorentz, Exponential Rise/Fall, Sin(x)/x, Random Noise, Haversine, Cardiac ## Digital voltmeter 2 4-digit AC RMS, DC, and DC+AC RMS voltage measurements ## Trigger frequency counter ² 8-digit #### Display - 15.6-inch (396 mm) TFT color - High Definition (1,920 x 1,080) resolution - Capacitive (multi-touch) touchscreen ## Connectivity USB Host (7 ports), USB 3.0 Device (1 port), LAN (10/100/1000 Base-T Ethernet; LXI Compliant), Display Port, DVI-D, VGA #### e*Scope® ² Free with product registration. Remotely view and control the oscilloscope over a network connection through a standard web browser #### Standard probes One 10 $M\Omega$ passive voltage probe with less than 4 pF capacitive loading per channel #### Warrantv 1 year standard #### **Dimensions** - 12.2 in (309 mm) H x 17.9 in (454 mm) W x 8.0 in (204 mm) D - Weight: <25 lbs. (11.4 kg) With a remarkably innovative pinch-swipe-zoom touchscreen user interface, the industry's largest high-definition display, and 4, 6, or 8 FlexChannel® inputs that let you measure one analog or eight digital signals per channel, the 5 Series MSO is ready for today's toughest challenges, and tomorrow's too. It sets a new standard for performance, analysis, and overall user experience. ## Never let a lack of channels slow down your verification and debug process again! The 5 Series MSO offers better visibility into complex systems by offering four, six and eight channel models with a large 15.6inch high-definition (1,920 x 1,080) display. Many applications, such as embedded systems, three-phase power electronics, automotive electronics, power supply design, and DC-to-DC power converters, require the observation of more than four analog signals to verify and characterize device performance, and to debug challenging system issues. Most engineers can recall situations in which they were debugging a particularly difficult problem and wanted greater system visibility and context, but the scope they were using was limited to two or four analog channels. Using a second scope involves significant effort to align trigger points, difficulty in determining timing relationships across the two displays, and documentation challenges. And while you might assume that a six and eight channel scope would cost 50% or 100% more than a four-channel scope, you'll be pleasantly surprised to find that six channel models are only ~25% more than four channel models and eight channel models are only ~67% more than four channel models. The additional analog channels can pay for themselves quickly by enabling you to keep current and future projects on schedule. Voltage measurements on a three-phase motor showing the three-phase input voltages after start-up. ## FlexChannel® technology enables maximum flexibility and broader system visibility The 5 Series MSO redefines what a Mixed Signal Oscilloscope (MSO) should be. FlexChannel technology enables each channel input to be used as a single analog channel, eight digital logic inputs (with the TLP058 logic probe), or simultaneous analog and spectrum views with independent acquisition controls for each domain. Imagine the flexibility and configurability this provides. With an eight FlexChannel model, you can configure the instrument to look at eight analog and zero digital signals. Or seven analog and eight digital. Or six analog and 16 digital, five analog and 24 digital and so on. You can change the configuration at any time by simply adding or removing TLP058 logic probes, so you always have the right number of digital channels. FlexChannel technology enables the ultimate in flexibility. Each input can be configured as a single analog or eight digital channels based on the type of probe you attach. Previous-generation MSOs required tradeoffs, with digital channels having lower sample rates or shorter record lengths than analog channels. The 5 Series MSO offers a new level of integration of digital channels. Digital channels share the same high sample rate (up to 6.25 GS/s), and long record length (up to 500 M points) as analog channels. The TLP058 provides eight high performance digital inputs. Connect as many TLP058 probes as you like, enabling up to a maximum of 64 digital channels. Channel 2 has a TLP058 Logic Probe connected to the eight inputs of a DAC. Notice the green and blue color coding, where ones are green and zeros are blue. Another TLP058 Logic Probe on Channel 3 is probing the SPI bus driving the DAC. The white edges indicate higher frequency information is available by either zooming in or moving to a faster sweep speed on the next acquisition. Beyond just analog and digital, FlexChannel inputs include Spectrum View. This Tektronix-patented technology enables you to simultaneously view both analog and spectral views of all your analog signals, with independent controls in each domain. For the first time ever, oscilloscope-based frequency-domain analysis is as easy as using a spectrum analyzer while retaining the ability to correlate frequency-domain activity with other time-domain phenomena. ## Unprecedented signal viewing capability The stunning 15.6" (396 mm) display in the 5 Series MSO is the largest display in the industry., providing 100% more display area than a scope with a 10.4" (264 mm) display. It is also the highest resolution display, with full HD resolution (1,920 x 1,080), enabling you to see many signals at once with ample room for critical readouts and analysis. The viewing area is optimized to ensure that the maximum vertical space is available for waveforms. The Results Bar on the right can be hidden, enabling the waveform view to use the full width of the display. Stacked display mode enables easy visibility of all waveforms while maintaining maximum ADC resolution on each input for the most accurate measurements. The 5 Series MSO offers a revolutionary new Stacked display mode. Historically, scopes have overlaid all waveforms in the same graticule, forcing difficult tradeoffs: - To make each waveform visible, you vertically scale and position each waveform so that they don't overlap. Each waveform uses a small percentage of the available ADC range, leading to less accurate measurements. - For measurement accuracy, you vertically scale and position each waveform to cover the entire display. The waveforms overlap each other, making it hard to distinguish signal details on individual waveforms The new Stacked display eliminates this tradeoff. It automatically adds and removes additional horizontal waveform 'slices' (additional graticules) as waveforms are created and removed. Each slice represents the full ADC range for the waveform. All waveforms are visually separated from each other while still using the full ADC range, enabling maximum visibility and accuracy. And it's all done automatically as waveforms are added or removed! Channels can easily be reordered in stacked display mode by dragging and dropping the channel and waveform badges in the Settings bar at the bottom of the display. Groups of channels can also be overlaid within a slice to simplify visual comparison of signals. The massive display in the 5 Series MSO also provides plenty of viewing area not only for signals, but also for plots, measurement results tables, bus decode tables and more. You can easily resize and relocate the various views to suit your application. Viewing four analog channels, a decoded serial bus waveform, decoded serial packet results table, seven measurements, a measurement histogram, measurements results table with statistics, and a DVM - simultaneously! # Exceptionally easy-to-use user interface lets you focus on the task at hand ## The Settings Bar - key parameters and waveform management Waveform and scope operating parameters are displayed in a series of "badges" in the Settings Bar that runs along the bottom of the display. The Settings Bar provides Immediate access for the most common waveform management tasks. With a single tap, you can: - Turn on channels - Add math waveforms - · Add reference waveforms - Add bus waveforms - Enable the optional integrated Arbitrary/Function generator (AFG) - Enable the optional integrated digital voltmeter (DVM) #### The Results Bar - analysis and measurements The Results Bar on the right side of the display includes immediate, one-tap access to the most common analytical tools such as cursors, measurements, searches, measurement and bus decode results tables, plots, and notes. DVM, measurement and search results badges are displayed in the Results Bar without sacrificing any waveform viewing area. For additional waveform viewing area, the Results Bar can be dismissed and brought back at any time. Configuration menus are accessed by simply double-tapping on the item of interest on the display. In this case, the Trigger badge was double-tapped to open the Trigger configuration menu. ## Touch interaction finally done right Scopes have included touch screens for years, but the touch interface has been an afterthought. The 5 Series MSO 's 15.6" display includes a capacitive touchscreen and provides the industry's first oscilloscope user interface truly designed for touch. The touch interactions that you use with phones and tablets, and expect in a touch enabled device, are supported in the 5 Series MSO. - Drag waveforms left/right or up/down to adjust horizontal and vertical
position or to pan a zoomed view - Pinch and expand to change scale or zoom in/out in either horizontal or vertical directions - Drag items to the trash can or drag them off the edge of the screen to delete them - Swipe in from the right to reveal the Results Bar or down from the top to access the menus in the upper left corner of the display Smooth, responsive front panel controls allow you to make adjustments with familiar knobs and buttons, and you can add a mouse or keyboard as a third interaction method. Interact with the capacitive touch display in the same way you do on your phones and #### Variable font size Historically, oscilloscope user interfaces have been designed with fixed font sizes to optimize viewing of waveforms and readouts. This implementation is fine if all users have the same viewing preferences, but they don't. Users spend a significant amount of time staring at screens, and Tektronix recognizes this. The 5 Series MSO offers a user preference for variable font sizes; scaling down to 12 points or up to 20 points. As you adjust the font size, the user interface dynamically scales so you can easily choose the best size for your application. Comparison showing how the user interface scales as font size changes. Efficient and intuitive front panel provides critical controls while still leaving room for the massive 15.6" high definition display. #### Attention to detail in the front-panel controls Traditionally, the front face of a scope has been roughly 50% display and 50% controls. The 5 Series MSO display fills about 85% of the face of the instrument. To achieve this, it has a streamlined front panel that retains critical controls for simple intuitive operation, but with a reduced number of menu buttons for functions directly accessed via objects on the display. Color-coded LED light rings indicate trigger source and vertical scale/ position knob assignments. Large, dedicated Run/ Stop and Single Sequence buttons are placed prominently in the upper right, and other functions like Force Trigger, Trigger Slope, Trigger Mode, Default Setup, Auto-set and Quick-save functions are all available using dedicated front panel buttons. ### Windows or not - you choose The 5 Series MSO offers you the choice of whether to include a Microsoft Windows[™] operating system. The 5 Series MSO comes with a standard removable SSD that contains a closed embedded operating system that will boot as a dedicated scope with no ability to run or install other programs. An optional SSD with Windows 10 operating system is available that will boot to an open Windows 10 configuration, so you can minimize the oscilloscope application and access a Windows desktop where you can install and run additional applications on the oscilloscope or you can connect additional monitors and extend your desktop. Simply swap the drives as needed through an access panel on the bottom of the instrument. Whether you run Windows or not, the oscilloscope operates in exactly the same way with the same look and feel and UI interaction. ## Need higher channel density? The 5 Series MSO is also available in a low-profile form factor - the MSO58LP. With eight 1 GHz input channels plus an auxiliary trigger input, in a 2U high package and 12-bit ADCs, the 5 Series MSO Low Profile sets a new standard for performance in applications where extreme channel density is required. ## **Experience the performance difference** With up to 2 GHz analog bandwidth, 6.25 GS/s sample rates, standard 62.5 Mpts record length and a 12-bit analog to digital converter (ADC), the 5 Series MSO has the performance you need to capture waveforms with the best possible signal fidelity and resolution for seeing small waveform details. ## Digital Phosphor technology with FastAcg[™] high-speed waveform capture To debug a design problem, first you must know it exists. Digital phosphor technology with FastAcq provides you with fast insight into the real operation of your device. Its fast waveform capture rate - greater than 500,000 waveforms per second - gives you a high probability of seeing the infrequent problems common in digital systems: runt pulses, glitches, timing issues, and more. To further enhance the visibility of rarely occurring events, intensity grading indicates how often rare transients are occurring relative to normal signal characteristics. FastAcq's high waveform capture rate enables you to discover infrequent problems common in digital design. #### Industry leading vertical resolution The 5 Series MSO provides the performance to capture the signals of interest while minimizing the effects of unwanted noise when you need to capture high-amplitude signals while seeing smaller signal details. At the heart of the 5 Series MSO are 12-bit analog-to-digital converters (ADCs) that provide 16 times the vertical resolution of traditional 8-bit ADCs. A new High Res mode applies a hardware-based unique Finite Impulse Response (FIR) filter based on the selected sample rate. The FIR filter maintains the maximum bandwidth possible for that sample rate while preventing aliasing and removing noise from the oscilloscope amplifiers and ADC above the usable bandwidth for the selected sample rate. High Res mode always provides at least 12 bits of vertical resolution and extends all the way to 16 bits of vertical resolution at ≤125 MS/s sample rates. New lower-noise front end amplifiers further improve the 5 Series MSO 's ability to resolve fine signal detail. The 5 Series MSO 's 12-bit ADC, along with the new High Res mode, enable industry leading vertical resolution. #### **Triggering** Discovering a device fault is only the first step. Next, you must capture the event of interest to identify root cause. The 5 Series MSO provides a complete set of advanced triggers, including: - Runt - Logic - · Pulse width - Window - Timeout - Rise/Fall time - · Setup and Hold violation - Serial packet - Parallel data - Sequence - Video - Visual Trigger - RF Frequency vs. Time - RF Magnitude vs. Time With up to a 500 Mpoint record length, you can capture many events of interest, even thousands of serial packets in a single acquisition, providing high-resolution to zoom in on fine signal details and record reliable measurements. The wide variety of trigger types and context-sensitive help in the trigger menu make it easier than ever to isolate the event of interest. ### Visual Trigger - finding the signal of interest quickly Finding the right cycle of a complex bus can require hours of collecting and sorting through thousands of acquisitions for an event of interest. Defining a trigger that isolates the desired event speeds up debug and analysis efforts. Visual Trigger extends the instrument's triggering capabilities by scanning through all waveform acquisitions and comparing them to on-screen areas (geometric shapes). You can create an unlimited number of areas using the mouse or touchscreen, and a variety of shapes (triangles, rectangles, hexagons, or trapezoids) can be used to specify the desired trigger behavior. Once shapes are created, they can be edited interactively to create custom shapes and ideal trigger conditions. Once multiple areas are defined, a Boolean logic equation can be used to set complex trigger conditions using on-screen editing features. Visual Trigger areas isolate an event of interest, saving time by only capturing the events you want to see. By triggering only on the most important signal events, Visual Trigger can save hours of capturing and manually searching through acquisitions. In seconds or minutes, you can find the critical events and complete your debug and analysis efforts. Visual Trigger even works across multiple channels, extending its usefulness to complex system troubleshooting and debug tasks. Multiple channel triggering. Visual Trigger areas can be associated with events spanning multiple channels, such as triggering on a specific burst-width on channel 1 and a specified bit pattern on channel 2. #### Accurate high-speed probing The TPP Series passive voltage probes included with every 5 Series MSO offer all the benefits of general-purpose probes - high dynamic range, flexible connection options, and robust mechanical design while providing the performance of active probes. Up to 1 GHz analog bandwidth enables you to see high frequency components in your signals, and extremely low 3.9 pF capacitive loading minimizes adverse effects on your circuits and is more forgiving of longer ground leads. An optional, low-attenuation (2X) version of the TPP probe is available for measuring low voltages. Unlike other low-attenuation passive probes, the TPP0502 has high bandwidth (500 MHz) as well as low capacitive loading (12.7 pF). 5 Series MSOs come standard with one TPP0500B (350 MHz, 500 MHz models) or TPP1000 (1 GHz, 2 GHz models) probe per channel. #### TekVPI Probe Interface The TekVPI® probe interface sets the standard for ease of use in probing. In addition to the secure, reliable connection that the interface provides, many TekVPI probes feature status indicators and controls, as well as a probe menu button right on the comp box itself. This button brings up a probe menu on the oscilloscope display with all relevant settings and controls for the probe. The TekVPI interface enables direct attachment of current probes without requiring a separate power supply. TekVPI probes can be controlled remotely through USB or LAN, enabling more versatile solutions in ATE environments. The 5 Series MSO provides up to 80 W of power to the front panel connectors, sufficient to power all connected TekVPI probes without the need for an additional probe power supply. #### IsoVu™ Isolated Measurement System Whether designing an inverter, optimizing a power supply, testing communication links, measuring across a current shunt resistor, debugging EMI or ESD issues, or trying to eliminate ground loops in your test setup, common mode interference has caused engineers to design,
debug, evaluate, and optimize "blind" until now. Tektronix' revolutionary IsoVu technology uses optical communications and power-over-fiber for complete galvanic isolation. When combined with the 5 Series MSO equipped with the TekVPI interface, it is the first, and only, measurement system capable of accurately resolving high bandwidth, differential signals, in the presence of large common mode voltage with: - Complete galvanic isolation - Up to 1 GHz bandwidth - 1 Million to 1 (120 dB) common mode rejection at 100 MHz - 10,000 to 1 (80 dB) of common mode rejection at full bandwidth - Up to 2,500 V differential dynamic range - 60 kV common mode voltage range The Tektronix TIVP Series IsoVu™ Measurement System offers a galvanically isolated measurement solution to accurately resolve high bandwidth, differential signals up to 2,500 Vpk in the presence of large common mode voltages, with the best-in-class common mode rejection performance across its bandwidth. #### High-side gate voltage measurement with IsoVu Differential Probe (blue trace) vs. IsoVu Optically Isolated Probe (yellow trace) The image above shows a comparison of the high-side gate voltage for a standard differential probe versus an optically isolated probe. For both at turn-off and turn-on, high-frequency ringing can be seen on the gate after the device's gate passes through the threshold region. Due to coupling between the gate and power loop, some ringing is expected. However, in the case of the differential probe, the ringing has a significantly higher amplitude than is measured by the optically isolated probe. This is likely due to the changing reference voltage inducing common mode currents within the probe and an artifact of a standard differential probe. While the waveform measured by the differential probe appears to pass the maximum gate voltage of the device, the more accurate measurement of the optically isolated probe makes it clear that the device is within specification. Application designers using standard differential probes for gate voltage measurements should use caution as it may not be possible to differentiate between the probing and measurement system artifact shown here and an actual violation of the device ratings. This measurement artifact may cause the designer to increase the gate resistance to slow down the switching transient and reduce the ringing. However, this would unnecessarily increase losses in the SiC device. For this reason, it is essential to have a measurement system that accurately reflects the actual dynamics of the device, in order to appropriately design the system and optimize performance. ## Comprehensive analysis for fast insight Basic waveform analysis Verifying that your prototype's performance matches simulations and meets the project's design goals requires careful analysis, ranging from simple checks of rise times and pulse widths to sophisticated power loss analysis, characterization of system clocks, and investigation of noise sources. The 5 Series MSO offers a comprehensive set of standard analysis tools including: - Waveform- and screen-based cursors - 36 automated measurements. Measurement results include all instances in the record, the ability to navigate from one occurrence to the next, and immediate viewing of the minimum or maximum result found in the record - Basic waveform math - Basic FFT analysis - Advanced waveform math including arbitrary equation editing with filters and variables - Spectrum View frequency domain analysis with independent controls for time and frequency domains - FastFrame™ Segmented Memory enables you to make efficient use of the oscilloscope's acquisition memory by capturing many trigger events in a single record while eliminating the large time gaps between events of interest. View and measure the segments individually or as an overlay. Standard amplitude and time measurements annotate the waveform display with visual bars and markers to indicate relative information. Measurement results tables provide comprehensive statistical views of measurement results with statistics across both the current acquisition and all acquisitions. Using automated measurements to characterize power supply bring up. #### **Callouts** Easy to use callouts (Note, Arrow, Rectangle, Bookmark) that are detailing the specifics of this test setup and corresponding results. - 1: Note: Write and position a text box on the screen. - 2: Arrow: Write and position a text box, then add an arrow to a specific location on the screen. - 3: Rectangle: Write text and outline a specific region on the screen indicated by a resizable box. - 4: Bookmark: Create a dynamic readout at a specific time relevant to a trigger point. This readout includes text, magnitude of the signal, signal units, as well as a line and target indicating the bookmark reference point. Documenting test results and methods is critical when sharing data across a team, recreating a measurement at a later date, or delivering a customer report. With a few taps on the screen, you can create as many custom callouts as needed; enabling you to document the specific details of your test results. With each callout, you can customize the text, location, color, font size, and font. #### Navigation and search Finding your event of interest in a long waveform record can be time consuming without the right search tools. With today's record lengths of many millions of data points, locating your event can mean scrolling through literally thousands of screens of signal activity. The 5 Series MSO offers the industry's most comprehensive search and waveform navigation with its innovative Wave Inspector® controls. These controls speed panning and zooming through your record. With a unique force-feedback system, you can move from one end of your record to the other in just seconds. Or, use intuitive drag and pinch/ expand gestures on the display itself to investigate areas of interest in a long record. The Search feature allows you to automatically search through your long acquisition looking for user-defined events. All occurrences of the event are highlighted with search marks and are easily navigated to, using the Previous (\leftarrow) and Next (\rightarrow) buttons found on the front panel or on the Search badge on the display. Search types include edge, pulse width, timeout, runt, window, logic, setup and hold, rise/fall time and parallel/serial bus packet content. You can define as many unique searches as you like. You can also quickly jump to the minimum and maximum value of search results by using the Min and Max buttons on the Search badge. Earlier, FastAcq revealed the presence of a runt pulse in a digital data stream prompting further investigation. In this long 20 ms acquisition, Search 1 reveals that there are approximately 37,500 rising edges in the acquisition. Search 2 (run simultaneously) reveals that there are six runt pulses in the acquisition. #### Mask and limit testing (optional) Custom, multiple segment mask capturing the presence of a signal glitch and runt pulse in a waveform. Whether you are focused on signal integrity or setting up pass/ fail conditions for production, mask testing is an efficient tool to characterize the behavior of certain signals in a system. Quickly create custom masks by drawing mask segments on the screen. Tailor a test to your specific requirements and set actions to take when a mask hit is registered, or when a complete test passes or fails. Limit testing is an insightful way to monitor the long-term behavior of signals, helping you characterize a new design or confirm hardware performance during production line testing. Limit tests compare your live signal to an ideal, or golden version of the same signal with user-defined vertical and horizontal tolerances. You can easily tailor a mask or limit test to your specific requirements by: - Defining test duration in number of waveforms - Setting a violation threshold that must be met before considering a test a failure - Counting violations/failures and reporting statistical information - Setting actions upon violations, test failure, and test complete #### **User-defined filtering (optional)** In the broad sense, any system that processes a signal can be thought of as a filter. For example, an oscilloscope channel operates as a low pass filter where its 3 dB down point is referred to as its bandwidth. Given a waveform of any shape, a filter can be designed that can transform it into a defined shape within the context of some basic rules, assumptions, and limitations. Digital filters have some significant advantages over analog filters. For example, the tolerance values of analog filter circuit components are high enough that high order filters are difficult or even impossible to implement. High order filters are easily implemented as digital filters. Digital filters can be implemented as Infinite Impulse Response (IIR) or Finite Impulse Response (FIR). The choice of IIR or FIR filters are based upon design requirements and application. The 5 Series MSO has the ability to apply designated filters to math waveforms through a MATH arbitrary function. Option 5-UDFLT takes this functionality a level deeper, providing more than MATH arbitrary basic functions and adds flexibility to support standard filters and can be used for application centric filter designs. Filters can be created through the Math dialog. Once a filter is edited, it can be easily applied, saved, and recalled for use or modification later. Filter types supported on the 5 Series MSO include: - Low pass - High pass - Band pass - Band stop - All pass - Hilbert - Differentiator - Custom Filter response types supported on the 5 Series MSO include: - Butterworth - Chebyshev I - Chebyshev II - Elliptical - Gaussian - Bessel-Thomson The Filter Response control is available for all Filter Types except All-pass, Hilbert, or Differentiator. Filter creation dialog showing selection for Filter
Type, Filter Response, Cutoff Frequency, Filter Order, and a graphical representation of Magnitude/Phase, Impulse Response, and Step Response Filter designs can be saved, recalled, and applied once any editing has been completed. #### Protocol decode and analysis (optional) During debugging, it can be invaluable to trace the flow of activity through a system by observing the traffic on one or more serial buses. It could take many minutes to manually decode a single serial packet, much less the thousands of packets that may be present in a long acquisition. And if you know the event of interest that you are attempting to capture occurs when a particular command is sent across a serial bus, wouldn't it be nice if you could trigger on that event? Unfortunately, it's not as easy as simply specifying an edge or a pulse width trigger. Triggering on a USB full-speed serial bus. A bus waveform provides time-correlated decoded packet content including Start, Sync, PID, Address, End Point, CRC, Data values, and Stop, while the bus decode table presents all packet content from the entire acquisition. The 5 Series MSO offers a robust set of tools for working with the most common serial buses found in embedded design including I²C, SPI, eSPI, I3C, RS-232/422/485/UART, SPMI, SMBus, CAN, CAN FD, LIN, FlexRay, SENT, PSI5, CXPI, Automotive Ethernet, MIPI C-PHY, MIPI D-PHY, USB LS/FS/HS, eUSB2.0, Ethernet 10/100, EtherCAT, Audio (I2S/LJ/RJ/TDM), MIL-STD-1553, ARINC 429, Spacewire, 8B/10B, NRZ, Manchester, SVID, SDLC, 1-Wire, MDIO, and NFC. Protocol search enables you to search through a long acquisition of serial packets and find the ones that contain the specific packet content you specify. Each occurrence is highlighted by a search mark. Rapid navigation between marks is as simple as pressing the Previous (\leftarrow) and Next (\rightarrow) buttons on the front panel or in the Search badge that appears in the Results Bar. The tools described for serial buses also work on parallel buses. Support for parallel buses is standard in the 5 Series MSO. Parallel buses can be up to 64 bits wide and can include a combination of analog and digital channels. - Serial protocol triggering lets you trigger on specific packet content including start of packet, specific addresses, specific data content, unique identifiers, and errors. - Bus waveforms provide a higher-level, combined view of the individual signals (clock, data, chip enable, and so on) that make up your bus, making it easy to identify where packets begin and end, and identifying sub-packet components such as address, data, identifier, CRC, and so on. - The bus waveform is time aligned with all other displayed signals, making it easy to measure timing relationships across various parts of the system under test. - Bus decode tables provide a tabular view of all decoded packets in an acquisition much like you would see in a software listing. Packets are time stamped and listed consecutively with columns for each component (Address, Data, and so on). 19 #### NFC decode and analysis (optional) Evaluating the performance margins of NFC designs is often difficult due to an inability to trace the protocol-level result down to the parametric signal level. This means marginal passes may result in failures later in the test flow, especially when designs are susceptible to interference and signal integrity issues caused by design trade-offs or nearby electronics, requiring time consuming debug across multiple instruments like a protocol analyzer and RF signal analyzer. The NFC Protocol Decode and Search option on the 5 Series MSO offers users the ability to view the transaction of the NFC link and trace the result through every step of signal manipulation in the standard, from the protocol-level down to the fundamental signal level to gain insight into exactly how your NFC chip, tag, reader, or mobile device is performing. NFC transactions can be long. The software option uniquely utilizes the data coming from the hardware DDC used for Spectrum View, which allows for sample rate compression, saving transfer time and memory, allowing for 100s of milliseconds or even seconds of signal data to be captured and analyzed. Additionally, because I/O signals are not always available to probe and trigger on from the device under test, triggering on the RF envelope itself is also a challenge considering NFC's small modulation index. With Spectrum View, you can trigger on the 13.56 MHz envelope using RF vs. Time traces and triggers, which is also unique amongst instruments. This capability simplifies up-front design validation and also provides a powerful debugging tool in a single instrument when failures do occur. NFC software option allows you to decode and search through their digital NFC bit stream for performing NFC analog/RF and digital pre-conformance, debug, and troubleshooting in a single instrument. #### Compliance applications (optional) A key focus area for embedded designers is testing various embedded and interface technologies for compliance. This ensures the device passes the logo certification at plugfests and achieves successful interoperability when working with other compliant devices. The compliance test specifications for high speed serial standards like USB, Ethernet, Memory, Display and MIPI are developed by the respective consortiums or governing bodies. Working closely with these consortiums, Tektronix has developed oscilloscope-based compliance applications that not only focus on providing pass/fail results but also provide deeper insight into any failures by providing relevant measurement tools such as jitter and timing analysis to debug failing designs. These automated compliance applications are built on a framework that provides: - Complete test coverage per the specification. - Fast test times with optimized acquisitions and test sequencing based on customized settings. - Analysis based on previously-acquired signals, allowing the device under test (DUT) to be disconnected from the setup once all acquisitions are completed. This also allows analysis of waveforms acquired on a different oscilloscope or captured at a remote lab, facilitating a very collaborative test environment. - Optional signal validation during acquisition to ensure the right signals are being captured. - Additional parametric measurements for design debug. - Custom eye diagram mask testing for insight into design margin. - Detailed reports in multiple formats with setup information, results, margins, waveform screen shots and plot images. The TekExpress USB 2.0 automated compliance testing configuration menu. #### **Spectrum View** Intuitive spectrum analyzer controls like center frequency, span and resolution bandwidth (RBW), independent from time domain controls, provide easy setup for frequency domain analysis. A spectrum view is available for each FlexChannel analog input, enabling multi-channel mixed domain analysis. It is often easier to debug an issue by viewing one or more signals in the frequency domain. Oscilloscopes have included math-based FFTs for decades in an attempt to address this need. However, FFTs are notoriously difficult to use for two primary reasons. First, when performing frequency-domain analysis, you think about controls like Center Frequency, Span, and Resolution Bandwidth (RBW), as you would typically find on a spectrum analyzer. But then you use an FFT, where you are stuck with traditional scope controls like sample rate, record length and time/div and have to perform all the mental translations to try to get the view you're looking for in the frequency-domain. Second, FFTs are driven by the same acquisition system that's delivering the analog time-domain view. When you optimize acquisition settings for the analog view, your frequency-domain view isn't what you want. When you get the frequency-domain view you want, your analog view is not what you want. With math-based FFTs, it is virtually impossible to get optimized views in both domains. Spectrum View changes all of this. Tektronix' patented technology provides both a decimator for the time-domain and a digital downconverter (DDC) for the frequency-domain behind each FlexChannel. The two different acquisition paths let you simultaneously observe both time- and frequency-domain views of the input signal with independent acquisition settings for each domain. Other manufacturers offer various 'spectral analysis' packages that claim ease-of-use, but they all exhibit the limitations described above. Only Spectrum View provides both exceptional ease-of-use and the ability to achieve optimal views in both domains simultaneously. Traditionally, performing RF measurements, such as RF Channel Power (CHP), Adjacent Channel Power Ratio (ACPR), and Occupied Bandwidth (OBW), required a dedicated spectrum or signal analyzer or spectrum analyzer software. This additional hardware or software leads to more complexity and higher costs. Available standard with Spectrum View, integrated RF Measurements on each channel saves users time, bench space, and costs with the ability to validate RF transmitter CHP, ACPR, and OBW directly on the oscilloscope. Additionally, the DDC significantly reduces the required sample rate to resolve a signal compared to a conventional FFT since it becomes a function of span rather than center frequency. This allows for reduced file sizes, improved frequency resolution, and faster spectrum update rates, leading to a more responsive and accurate solution capable of capturing 10's of seconds of spectrum data. Spectrum Time gates the range of time where the FFT is being calculated. Represented by a small graphical rectangle in the time domain view, it can be positioned to provide time correlation with the time domain waveform. Perfect for conducting Mixed Domain Analysis. Up to 11 automated peak markers provide frequency and magnitude values of each peak. The Reference marker is always the highest peak
shown and is indicated in red. #### Visualizing changes in the RF signal (optional) RF time domain traces make it easy to understand what's happening with a time-varying RF signal. There are three RF time domain traces that are derived from the underlying I and Q data of Spectrum View: - Magnitude The instantaneous amplitude of the spectrum vs. time. - Frequency The instantaneous frequency of the spectrum relative to the center frequency vs. time. - Phase The instantaneous phase of the spectrum relative to the center frequency vs. time. Each of these traces can be turned on and off independently, and all three can be displayed simultaneously. The data is stored as in-phase and quadrature (I&Q) samples and precise synchronization is maintained between the time domain data and the I&Q data. When RF vs. Time traces are activated, IQ data can be captured and exported to file for more advanced analysis within 3rd party applications. With frequency on the x-axis, time on the y-axis, and power level indicated by variations in color, the Spectrogram display (included with option RFVT) offers enhanced insight into changes in signal amplitude and frequency content over time, allowing you to see where and when changes in spectral activity occur. This makes it ideal for displaying trends in spectral data such as when diagnosing complex spurious, frequency hopping, multi-channel, and dynamic signals. Spectrogram benefits include: - Ability to view all spectrum activity in a given span and acquisition immediately, without having to specify FFT overlap or Spectrum - Quickly compare spectrum at different moments in time using timecorrelated cursors and up to three overlaid spectrum traces - Pinch and zoom in on spectral activity of interest with display resolution and FFT overlap automatically optimized - Adjust center frequency, span, RBW, and amplitude color-scaling as needed to view all signals of interest - Simultaneously view trends in multi-channel or non-contiguous spectrum by activating spectrograms on each available oscilloscope channel and independently setting center frequency and amplitude scaling The lower trace is the frequency vs. time trace derived from the input signal. Notice that the Spectrum Time is positioned during a transition from the lowest frequency to the middle frequency, so the energy is spread across a number of frequencies. With the frequency vs. time trace, you can easily see the different frequency hops, simplifying characterization of how the device switches between frequencies. ## Triggering on changes in the RF signal (optional) Whether you need to find the source of electromagnetic interference or understand the behavior of a VCO, hardware triggers for RF versus time make it easy to isolate, capture, and understand the RF signal behavior. Trigger on edges, pulse widths, and timeout behavior of RF magnitude vs. time and RF frequency vs. time. #### Comprehensive vector signal analysis with SignalVu-PC (optional) When analysis needs go beyond the basic spectrum, amplitude, frequency, and phase vs. time you can employ the SignalVu-PC vector signal analysis application. This enables in-depth transient RF signal analysis, detailed RF pulse characterization, and comprehensive analog and digital RF modulation analysis. To enable the SignalVu-PC application on your 5 Series MSO Oscilloscope, three options are required. - 1. To run the application on the instrument, the Windows SSD (5B-WIN) needs to be installed in the oscilloscope. - 2. The Spectrum View RF versus time traces option (5-SV-RFVT) needs to be installed in the oscilloscope to enable I/Q data transfer. - 3. The Connect (CONxx-SVPC) license needs to be installed on the SignalVu-PC to enable base features of application, which includes 16+ RF measurements and displays. The RF digital down converters and integrated measurement engines behind each channel have your complex mixed-signal and mixeddomain analysis needs covered in one instrument. Pulse analysis on SignalVu-PC running on a 5 Series B MSO #### Advanced pulse analysis (optional) The per-channel DDC available on the 5 Series MSO offers the ability to analyze RF signals independently on all channels, including configuration of separate timing, triggering and measurements. This capability extends to evaluation of time, frequency and modulation domains simultaneously when using the SignalVu-PC VSA software. The Advanced Pulse Analysis Option (SVPNL-SVPC) allows you to analyze multiple radar signals across measurement channels on a common timebase with independent or coordinated controls and measurements. The advanced pulse analysis application in SignalVu-PC offers up to 31 automated pulse parameter measurements, statistics, and displays for analysis on up to 8 signal sources simultaneously, streamlining workflows and boosting efficiency. #### Jitter analysis The 5 Series MSO has seamlessly integrated the DPOJET Essentials jitter and eye pattern analysis software package, extending the oscilloscope's capabilities to take measurements over contiguous clock and data cycles in a single-shot real-time acquisition. This enables measurement of key jitter and timing analysis parameters such as Time Interval Error and Phase Noise to help characterize possible system timing issues. Analysis tools, such as plots for time trends and histograms, quickly show how timing parameters change over time, and spectrum analysis quickly shows the precise frequency and amplitude of jitter and modulation sources. Option 5-DJA adds additional jitter analysis capability to better characterize your device's performance. The 31 additional measurements provide comprehensive jitter and eye-diagram analysis and jitter decomposition algorithms, enabling the discovery of signal integrity issues and their related sources in today's high-speed serial, digital, and communication system designs. Option 5-DJA also provides eye diagram mask testing for automated pass/fail testing. The unique Jitter Summary provides a comprehensive view of your device's performance in a matter of seconds. #### Power analysis (optional) The 5 Series MSO has also integrated the optional 5-PWR/SUP5-PWR power analysis package into the oscilloscope's automatic measurement system to enable quick and repeatable analysis of power quality, input capacitance, in-rush current, harmonics, switching loss, safe operating area (SOA), modulation, ripple, magnetics measurements, efficiency, amplitude and timing measurements, slew rate (dv/dt and di/dt), Control Loop Response (Bode Plot), and Power Supply Rejection Ratio (PSRR). Measurement automation optimizes the measurement quality and repeatability at the touch of a button, without the need for an external PC or complex software setup. The Power Analysis measurements display a variety of waveforms and plots. #### Digital power management (optional) The Digital Power Management and analysis (DPM) software option provides automated power rail measurements for Power Integrity Analysis on the 5 Series MSO oscilloscopes. The solution enables both simultaneous analysis of multiple power rails (using power rail probes) and sequencing of measurements (using passive probes). The solution is designed with the user work flow in mind to help design engineers meet their time-to-market needs. It also generates an automated report that includes measurements, test results, and plot images. Key measurements include ripple, ripple-on-ripple, power sequencing, jitter analysis, transient analysis, power integrity and signal integrity analysis. The Power Supply Induced Jitter (PSIJ) measurement acts as a tool that gives insights and confidence to signal integrity engineers to model the effects of hardware changes, to test their effectiveness before actually making them. The measurement provides essential results such as eye height, eye width, PJ, and TIE before and after filtering. #### **Inverter Motor Drive Analysis (optional)** Edit Utility Plot 1 - Phasor Diagram (Meas 3) On the left is a Phasor Diagram displaying the phase and magnitude of current and voltage measurements for all three phases of power. In the results badge on the right, are the results from the automated measurements of power quality, power harmonics and the phasor diagram. During the design and validation of systems that utilize 3 Phase power, it can be difficult to correlate control systems and power electronics with the performance of the overall system. The IMDA can be used on six and eight channel versions of the 5 Series MSO (MSO56B and MSO58B) to analyze digital control and power electronics sub-systems. This will give you deeper insights enabling you to debug the design, efficiency and reliability of: - 3 Phase Power inverters, converters, power supplies and Automotive 3 Phase designs for DC-AC topology - Motors (brushless AC, brushless DC, induction, permanent magnet, universal, stepper, rotor) - Drives (AC, DC, variable frequency, servo) The automated measurements that are included with 5-IMDA are: - Input analysis - Power Quality with Phasor Diagram - Harmonics - Input Voltage - Input Current - Input Power - Ripple analysis - Line Ripple - Switching Ripple - Output analysis - Phasor Diagram - Efficiency - Mechanical Power - System Efficiency - Wiring configurations - 1 Volt/1 Current 1P2W - 2 Volt/2 Current 1P3W - 2 Volt/2 Current 3P3W - 3 Volt/3 Current 3P3W - 3 Volt/3 Current 3P4W With option 5-IMDA-DQ0 gain the ability to transform the three-phase AC time domain waveforms into DC signals that are graphically represented as rotating coordinates on a phasor plot. # Wide Bandgap Double Pulse Tests (optional) File Edit Applications Utility Help Waveform View The image shows diode reverse recovery measurements with reverse recovery current and voltage captured on the high-side. The Wide Bandgap Double Pulse Test application (Opt. 5-WBG-DPT) offers precise Wide Bandgap measurements that make device and the system validation easier. It has an
ability to test SiC or GaN devices and also Si MOSFET and IGBTs. The application is compatible with all the Tektronix VPI probes and when used with the Tektronix IsoVu™ probes, it helps uncover all the hidden artifacts of SiC or GaN devices at the circuit level. The application offers automated measurements as per the JEDEC and IEC standards. It offers unique features such as per-cycle analysis with annotation, flexibility with custom reference level settings, configurable integration points, and power preset that can be set based on the DUT designs. Following measurements are performed: - Low side switching parameters and High side diode reverse recovery measurements - Low side and High side switching parameters ## Designed with your needs in mind Connectivity The 5 Series MSO contains a number of ports which you can use to connect the instrument to a network, directly to a PC, or to other test equipment. - Two USB 2.0 and one USB 3.0 host ports on the front and four more USB host ports (two 2.0, two 3.0) on the rear panel enable easy transfer of screen shots, instrument settings, and waveform data to a USB mass storage device. A USB mouse and keyboard can also be attached to USB host ports for instrument control and data entry. - The rear panel USB Device port is useful for controlling the oscilloscope remotely from a PC. - The standard 10/100/1000BASE-T Ethernet port on the rear of the instrument enables easy connection to networks and provides LXI Core 2011 compatibility. - DVI-D, Display Port and VGA ports on the rear of the instrument lets you duplicate the instrument display on an external monitor or projector. The I/O you need to connect the 5 Series MSO to the rest of your design environment. ### Upgrade Automated Test Equipment (ATE) systems quickly and smoothly Anyone working closely with automated test systems knows that moving to a new model or platform can be painful. Modifying an existing codebase for a new product can be prohibitively expensive and complicated. Now there's a solution. All 5 Series MSO's include a Programmatic Interface (PI) Translator. When enabled, the PI Translator acts as an intermediate layer between your test application and the oscilloscope. It recognizes a subset of legacy commands from the popular DPO/MSO5000B and DPO7000C platforms and translates them on the fly into supported commands for the 5 Series MSO. The Translator interface is designed to be humanreadable and easily extensible, which means that you can customize its behavior to minimize the amount of effort required when transitioning to your new oscilloscope. #### Remote operation to improve collaboration Want to collaborate with a design team on the other side of the world? The included e*Scope® capability enables fast control of an oscilloscope running the Embedded Operating System over a network connection. This can be viewed from any PC or device through a standard web browser. Simply enter the IP address or network name of the oscilloscope and a web page will be served to the browser. Control the oscilloscope remotely in the exact same way that you do in-person using the built-in touchscreen. Alternatively for oscilloscopes with the Microsoft Windows 10 Operating System, you can use Windows Remote DesktopTM to connect directly to the instrument and control it remotely. The industry-standard TekVISA™ protocol interface is included for using and enhancing Windows applications for data analysis and documentation. IVI-COM instrument drivers are included to enable easy communication with the oscilloscope using LAN or USBTMC connections from an external PC. e*Scope provides simple remote viewing and control using common web browsers. #### PC-based analysis and remote connection to your oscilloscope Get the analysis capability of an award-winning oscilloscope on your PC. Analyze waveforms anywhere, anytime. The basic license lets you view and analyze waveforms, perform many types of measurements and decode the most common serial buses - all while remotely accessing your oscilloscope. Advanced license options add capabilities such as multi-scope analysis, more serial bus decoding options, jitter analysis, and power measurements. TekScope PC analysis software runs on a Windows computer with the same awardwinning user experience as the 4, 5, and 6 Series MSO's Key features of the TekScope PC analysis software include: - Recall Tektronix oscilloscope sessions and waveform files from the equipment made by Tektronix and other vendors. - Waveform file formats supported include .wfm, .isf, .csv, .h5, .tr0, .trc, and .bin - Remotely connect to the Tektronix 4/5/6 Series MSO's to acquire data in real-time - Share the data remotely with your colleagues so that they can perform analysis and make measurements as if they were sitting in front of the oscilloscope - · Synchronize waveforms from the multiple oscilloscopes in real-time - Perform advanced analysis even if your oscilloscope isn't equipped with TekScope PC analysis software #### TekDrive collaborative test and measurement workspace Using TekDrive, you can upload, store, organize, search, download, and share any file type from any connected device. TekDrive is natively integrated into the 5 Series MSO for seamless sharing and recalling of files - no USB stick is required. Analyze and explore standard files like .wfm, .isf, .tss, and .csv, directly in a browser with smooth interactive waveform viewers. TekDrive is purpose built for integration, automation, and security. TekDrive collaborative workspace - save files directly from your 5 Series MSO and share across your team #### Arbitrary/Function Generator (AFG) The instrument contains an optional integrated arbitrary/function generator, perfect for simulating sensor signals within a design or adding noise to signals to perform margin testing. The integrated function generator provides output of predefined waveforms up to 100 MHz for sine, square, pulse, ramp/triangle, DC, noise, $\sin(x)/x$ (Sinc), Gaussian, Lorentz, exponential rise/fall, Haversine and cardiac. The AFG can load waveform records up to 128 k points in size from an internal file location or a USB mass storage device. The AFG feature is compatible with Tektronix' ArbExpress PC-based waveform creation and editing software, making creation of complex waveforms fast and easy. #### Digital Voltmeter (DVM) and Trigger Frequency Counter The instrument contains an integrated 4-digit digital voltmeter (DVM) and 8-digit trigger frequency counter. Any of the analog inputs can be a source for the voltmeter, using the same probes that are already attached for general oscilloscope usage. The trigger frequency counter provides a very precise readout of the frequency of the trigger event on which you're triggering. Both the DVM and trigger frequency counter are available for free and are activated when you register your product. #### **Enhanced security option** The optional 5-SEC enhanced security option enables password-protected enabling/disabling of all instrument I/O ports and firmware upgrades. In addition, option 5-SEC provides the highest level of security by ensuring that internal memory never stores user settings or waveform data, in compliance with National Industrial Security Program Operating Manual (NISPOM) DoD 5220.22-M, Chapter 8 requirements and Defense Security Service Manual for the Certification and Accreditation of Classified Systems under the NISPOM. This ensures that you can confidently move the instrument out of a secure area. #### Help when you need it The 5 Series MSO includes several helpful resources so you can get your questions answered rapidly without having to find a manual or go to a website: - Graphical images and explanatory text are used in numerous menus to provide quick feature overviews. - All menus include a question mark icon in the upper right that takes you directly to the portion of the integrated help system that applies to that menu. - A short user interface tutorial is included in the Help menu for new users to come up to speed on the instrument in a matter of a few minutes. Integrated help answers your questions rapidly without having to find a manual or go to the internet. ## **Specifications** All specifications are guaranteed and apply to all models unless noted otherwise. ## Model overview ### Oscilloscope | | MSO54B | MSO56B | MSO58B | | |---|--|--|--------|--| | FlexChannel inputs | 4 | 6 | 8 | | | Maximum analog channels | 4 | 6 | 8 | | | Maximum digital channels (with optional logic probes) | 32 | 48 | 64 | | | Bandwidth (calculated rise time) | 350 MHz (1.15 ns), 500 MHz (800 ps), 1 (| GHz (400 ps), 2 GHz (225 ps) | | | | | < 2 GHz models: | 50 Ω: ±1.0%, (±2.0% at ≤ 1 mV/div)
±0.5% of full scale, (±1.0% of full scale at
1 MΩ: ±1.0%, (±2.0% at ≤ 1 mV/div)
±0.5% of full scale, (±1.0% of full scale at | , ,, | | | DC Gain Accuracy | 2 GHz models: | 50 Ω: ±1.2%, (±2.0% at ≤ 1 mV/div)
±0.6% of full scale, (±1.0% of full scale at
1 MΩ: ±1.0%, (±2.0% at ≤ 1 mV/div)
±0.5% of full scale, (±1.0% of full scale at | , ,, | | | ADC Resolution | 12 bits | . (| | | | | 8 bits @ 6.25 GS/s
12 bits @ 3.125 GS/s
13 bits @ 1.25 GS/s (High Res)
14 bits @ 625 MS/s (High Res)
15 bits @ 312.5 MS/s (High Res) | | | | | Vertical Resolution | 16 bits @ ≤125 MS/s (High Res) | | | | | Sample Rate | 6.25 GS/s on all analog / digital channels | (160 ps resolution) | | | | Record Length (std.) | 62.5 Mpoints on all analog / digital channel | els | | | | Record Length (opt.) | | 125, 250, or 500 Mpoints on all analog / digital channels | | | | Waveform
Capture Rate | >500,000 wfms/s | | | | | Arbitrary/Function Generator (opt.) | 13 predefined waveform types with up to | 13 predefined waveform types with up to 100 MHz output | | | | DVM | 4-digit DVM (free with product registration) | | | | | Trigger Frequency Counter | 8-digit frequency counter (free with produ- | ct registration) | | | ## Vertical system - analog channels **Bandwidth selections** 50 Ω : 20 MHz, 250 MHz, and the full bandwidth value of your model 1 M Ω : 20 MHz, 250 MHz, 500 MHz Input coupling DC, AC Input impedance $50 \Omega \pm 1\% 1 M\Omega \pm 1\%$ with 13.0 pF ± 1.5 pF (< 2 GHz models) 1 M Ω ± 1% with 14.5 pF ± 1.5 pF (2 GHz models) Input sensitivity range 1 ΜΩ 500 μV/div to 10 V/div in a 1-2-5 sequence 50 Ω 500 µV/div to 1 V/div in a 1-2-5 sequence Note: 500 µV/div is a 2X digital zoom of 1 mV/div Maximum input voltage 50 Ω: 5 V_{RMS} , with peaks $\leq \pm 20 \text{ V (DF } \leq 6.25\%)$ 1 M Ω : 300 V_{RMS} , CAT II For 1 M Ω , derate at 20 dB/decade from 4.5 MHz to 45 MHz; Derate at 14 dB/decade from 45 MHz to 450 MHz; > 450 MHz, 5.5 V_{RMS} #### Effective bits (ENOB), typical < 2 GHz models, High Res mode, 50 Ω, 10 MHz input with 90% full screen | Bandwidth | ENOB | |-----------|------| | 1 GHz | 7.6 | | 500 MHz | 7.9 | | 350 MHz | 8.2 | | 250 MHz | 8.1 | | 20 MHz | 8.9 | 2 GHz models, High Res mode, 50 Ω, 10 MHz input with 90% full screen | Bandwidth | ENOB | |-----------|------| | 1 GHz | 7.0 | | 250 MHz | 7.8 | | 20 MHz | 8.7 | #### Random noise, RMS, typical 2 GHz models, High Res mode (RMS) | 2 GHz models | 50 Ω | | 1 ΜΩ | | | | |------------------------|---------|---------|---------|---------|---------|---------| | V/div | 1 GHz | 250 MHz | 20 MHz | 500 MHz | 250 MHz | 20 MHz | | ≤1 mV/div ³ | 66.8 µV | 66.8 µV | 27.2 µV | 208 μV | 117 µV | 64.6 µV | | 2 mV/div ⁴ | 96.9 µV | 77.5 μV | 28.5 μV | 224 μV | 117 µV | 66.7 µV | | Table continued | | | | • | | | ³ Bandwidth at \leq 1 mV/div is limited to 175 MHz in 50 Ω . ⁴ Bandwidth at 2 mV/div is limited to 350 MHz in 50 Ω. | 2 GHz models | 50 Ω | | | 1 ΜΩ | | | |-----------------------|---------|---------|---------|---------|---------|---------| | V/div | 1 GHz | 250 MHz | 20 MHz | 500 MHz | 250 MHz | 20 MHz | | 5 mV/div ⁵ | 202 μV | 108 μV | 37.4 μV | 238 μV | 133 μV | 68.7 μV | | 10 mV/div | 275 µV | 147 µV | 56.1 μV | 277 μV | 173 μV | 83.6 μV | | 20 mV/div | 469 µV | 251 μV | 106 μV | 416 µV | 278 μV | 125 µV | | 50 mV/div | 1.10 mV | 589 μV | 253 μV | 916 μV | 620 µV | 271 μV | | 100 mV/div | 2.75 mV | 1.47 mV | 602 μV | 1.90 mV | 1.36 mV | 603 µV | | 1 V/div | 18.4 mV | 10.8 mV | 4.68 mV | 20.3 mV | 14.6 mV | 6.54 mV | ## 1 GHz, 500 MHz, 350 MHz models, High Res mode (RMS) | < 2 GHz models | 50 Ω | | | | | 1 ΜΩ | | | | |------------------------|------------|---------|---------|---------|---------|---------|---------|---------|---------| | V/div | 1
GHz | 500 MHz | 350 MHz | 250 MHz | 20 MHz | 500 MHz | 350 MHz | 250 MHz | 20 MHz | | ≤1 mV/div ⁶ | 254
μV | 198 μV | 141 µV | 118 µV | 70.0 μV | 189 μV | 143 µV | 118 µV | 64.8 µV | | 2 mV/div | 255
μV | 198 μV | 143 µV | 121 µV | 70.4 μV | 194 μV | 145 μV | 121 µV | 66.0 µV | | 5 mV/div | 262
μV | 202 μV | 150 μV | 133 μV | 72.8 µV | 196 μV | 152 μV | 130 μV | 69.6 μV | | 10 mV/div | 283
μV | 218 μV | 169 μV | 158 μV | 79.8 μV | 212 µV | 167 μV | 154 μV | 78.2 μV | | 20 mV/div | 357
μV | 273 μV | 222 μV | 223 μV | 102 μV | 269 μV | 214 μV | 223 μV | 104 μV | | 50 mV/div | 677
μV | 516 μV | 436 μV | 460 μV | 196 μV | 490 μV | 410 μV | 480 μV | 207 μV | | 100 mV/div | 1.61
mV | 1.23 mV | 1.02 mV | 1.04 mV | 464 µV | 1.16 mV | 964 μV | 1.05 mV | 475 μV | | 1 V/div | 13.0
mV | 9.88 mV | 8.41 mV | 8.94 mV | 3.77 mV | 13.6 mV | 10.6 mV | 11.1 mV | 5.47 mV | Position range ±5 divisions ## Offset ranges, maximum Input signal cannot exceed maximum input voltage for the 50 Ω input path. | Volts/div Setting | Maximum offset range, 50 Ω Input | |------------------------|----------------------------------| | 500 μV/div - 99 mV/div | ±1 V | | Table continued | | $^{^5}$ Bandwidth at 5 mV/div is limited to 1.5 GHz in 50 $\Omega.$ | Volts/div Setting | Maximum offset range, 50 Ω Input | |----------------------|----------------------------------| | 100 mV/div - 1 V/div | ±10 V | #### 2 GHz models | Volts/div Setting | Maximum offset range, 50 Ω Input | |-------------------------|---------------------------------------| | 500 μV/div - 50 mV/div | ±1 V | | 51 mV/div - 99 mV/div | ± (-10 * (Volts/div Setting) + 1.5 V) | | 100 mV/div - 500 mV/div | ±10 V | | 501 mV/div - 1 V/div | ± (-10 * (Volts/div Setting) + 15 V) | | Volts/div Setting | Maximum offset range, 1 MΩ Input | |------------------------|----------------------------------| | 500 μV/div - 63 mV/div | ±1 V | | 64 mV/div - 999 mV/div | ±10 V | | 1 V/div - 10 V/div | ±100 V | #### ≤ 1 GHz models | Volts/div Setting | Maximum offset range | | |------------------------|----------------------|------------| | | 50 Ω Input | 1 MΩ Input | | 500 μV/div - 63 mV/div | ±1 V | ±1 V | | 64 mV/div - 999 mV/div | ±10 V | ±10 V | | 1 V/div - 10 V/div | ±10 V | ±100 V | | Offset accuracy | ±(0.005 X offset - position + DC balance) | |--|--| | Crosstalk (channel isolation), typical | ≥ 200:1 up to the rated bandwidth for any two channels having equal Volts/div settings | | DC balance | 0.1 div with DC-50 Ω oscilloscope input impedance (50 Ω BNC terminated) | | | 0.2 div at 1 mV/div with DC-50 Ω oscilloscope input impedance (50 Ω BNC terminated) | | | 0.4 div at 500 μ V/div with DC-50 Ω oscilloscope input impedance (50 Ω BNC terminated) | | | 0.2 div with DC-1 M Ω oscilloscope input impedance (50 Ω BNC terminated) | | | 0.4 div at 500 μ V/div with DC-1 M Ω scope input impedance (50 Ω BNC terminated) | ## Vertical system - digital channels Number of channels 8 digital inputs (D7-D0) per installed TLP058 (traded off for one analog channel) **Vertical resolution** 1 bit $^{^{6}}$ Bandwidth at 500 $\mu\text{V/div}$ is limited to 250 MHz in 50 $\Omega.$ | Maximum input toggle rate | 500 MHz | |---|--| | Minimum detectable pulse width, typical | 300 ps | | Thresholds | One threshold per digital channel | | Threshold range | ±40 V | | Threshold resolution | 10 mV | | Threshold accuracy | ± [100 mV + 3% of threshold setting after calibration] | | Input hysteresis, typical | 100 mV at the probe tip | | Input dynamic range, typical | 30 V_{pp} for $F_{in} \le 200$ MHz, 10 V_{pp} for $F_{in} > 200$ MHz | | Absolute maximum input voltage, typical | ±42 V peak | | Minimum voltage swing, typical | 400 mV peak-to-peak | | Input impedance, typical | 100 kΩ | | Probe loading, typical | 2 pF | | Horizontal system | | | Time base range | 200 ps/div to 1,000 s/div | | Sample rate range | 1.5625 S/s to 6.25 GS/s (real time) | | | 12.5 GS/s to 500 GS/s (interpolated) | | Record length range | | | Standard | 1 kpoints to 62.5 Mpoints in single sample increments | | Optional 5-RL-125M | 125 Mpoints | | Optional 5-RL-250M | 250 Mpoints | | Optional 5-RL-500M | 500 Mpoints | | Aperture uncertainty | ≤ 0.450 ps + (1 * 10 ⁻¹¹ * Measurement Duration) _{RMS} , for measurements having duration ≤ 100 ms | #### Timebase accuracy ±2.5 x 10⁻⁶ over any ≥1 ms time interval | Description | Specification | |-----------------------|---| | Factory Tolerance | ±5.0 x10 ⁻⁷ | | | At calibration, 23 °C ambient, over any ≥1 ms interval | | Temperature stability | ±5.0 x10 ⁻⁷ | | | Tested at operating temperatures | | Crystal aging | ±1.5 x 10 ⁻⁶ | | | Frequency tolerance change at 25 °C over a period of 1 year | # Delta-time measurement accuracy, nominal $$\mathsf{DTA}_{\mathsf{pp}}(\mathsf{typical}) = 10 \times \sqrt{\left(\frac{\mathsf{N}}{\mathsf{SR}_1}\right)^2 + \left(\frac{\mathsf{N}}{\mathsf{SR}_2}\right)^2 + \left(0.450 \; \mathsf{ps} + \left(1 \times 10^{-11} \times \mathsf{t_p}\right)\right)^2} + \mathsf{TBA} \times \mathsf{t_p}$$ $$DTA_{RMS} = \sqrt{\left(\frac{N}{SR_1}\right)^2 + \left(\frac{N}{SR_2}\right)^2 + \left(0.450ps + \left(1 \times 10^{-11} \times t_p\right)\right)^2} + TBA \times t_p$$ (assume edge shape that results from Gaussian filter response) The formula to calculate delta-time measurement accuracy (DTA) for a given instrument setting and input signal assumes insignificant signal content above Nyquist frequency, where: SR₁ = Slew Rate (1st Edge) around 1st point in measurement SR₂ = Slew Rate (2nd Edge) around 2nd point in measurement N = input-referred guaranteed noise limit (V_{RMS}) TBA = time base accuracy or reference frequency error t_p = delta-time measurement duration (sec) ## Maximum duration at highest sample rate 10 ms (standard record length) or 80 ms (maximum optional record length) #### Time base delay time range -10 divisions to 5,000 s #### Deskew range -125 ns to +125 ns with a resolution of 40 ps full bandwidth, typical **Delay between analog channels**, \leq 100 ps for any two channels with input impedance set to 50 Ω , DC coupling with equal Volts/div or above 10 mV/div Delay between analog and digital FlexChannels, typical < 1 ns when using a TLP058 and a passive probe matching the bandwidth of the scope, with no bandwidth limits applied Delay between any two digital FlexChannels, typical 320 ps Delay between any two bits of a 200 ps digital FlexChannel, typical #### Trigger system **Trigger modes** Auto, Normal, and Single **Trigger coupling** DC, HF Reject (attenuates > 50 kHz), LF Reject (attenuates < 50 kHz), noise reject
(reduces sensitivity) Trigger holdoff range 0 ns to 10 seconds #### Edge-type trigger sensitivity, DC coupled, typical | Path | Range | Specification | |--|---------------------------|--| | 1 M Ω path (all models) | 0.5 mV/div to 0.99 mV/div | 5 mV from DC to instrument bandwidth | | | ≥ 1 mV/div | The greater of 5 mV or 0.7 div from DC to lesser of 500 MHz or instrument BW, & 6 mV or 0.8 div from > 500 MHz to instrument bandwidth | | 50 Ω path, 1
GHz, 500 MHz,
350 MHz
models | | The greater of 5.6 mV or 0.7 div from DC to the lesser of 500 MHz or instrument BW, & 7 mV or 0.8 div from > 500 MHz to instrument bandwidth | | 50 Ω path, 2
GHz models | 0.5 mV/div to 0.99 mV/div | 3.0 div from DC to instrument bandwidth | | | 1 mV/div to 9.98 mV/div | 1.5 divisions from DC to instrument bandwidth | | | ≥ 10 mV/div | < 1.0 division from DC to instrument bandwidth | | Line | | Fixed | #### Trigger jitter, typical - ≤ 5 ps_{RMS} for sample mode and edge-type trigger - ≤ 7 ps_{RMS} for edge-type trigger and FastAcq mode - ≤ 40 ps_{RMS} for non edge-type trigger modes #### Trigger level ranges | Source | Range | |----------------|------------------------------------| | Any Channel | ±5 divs from center of screen | | Aux In Trigger | ±5 V | | Line | Fixed at about 50% of line voltage | This specification applies to logic and pulse thresholds. Trigger frequency counter 8-digits (free with product registration) **Trigger types** Edge: Positive, negative, or either slope on any channel. Coupling includes DC, AC, noise reject, HF reject, and LF reject Pulse Width: Trigger on width of positive or negative pulses. Event can be time- or logic-qualified Timeout: Trigger on an event which remains high, low, or either, for a specified time period. Event can be logic-qualified **Runt:** Trigger on a pulse that crosses one threshold but fails to cross a second threshold before crossing the first again. Event can be time- or logic-qualified Window: Trigger on an event that enters, exits, stays inside or stays outside of a window defined by two user-adjustable thresholds. Event can be time- or logic-qualified Logic: Trigger when logic pattern goes true, goes false, or occurs coincident with a clock edge. Pattern (AND, OR, NAND, NOR) specified for all input channels defined as high, low, or don't care. Logic pattern going true can be time-qualified Setup & Hold: Trigger on violations of both setup time and hold time between clock and data present on any input channels **Rise / Fall Time:** Trigger on pulse edge rates that are faster or slower than specified. Slope may be positive, negative, or either. Event can be logic-qualified Video (option 5-VID): Trigger on all lines, odd, even, or all fields of NTSC, PAL, and SECAM video signals Sequence: Trigger on B event X time or N events after A trigger with a reset on C event. In general, A and B trigger events can be set to any trigger type with a few exceptions: logic qualification is not supported, if A event or B event is set to Setup & Hold, then the other must be set to Edge, and Ethernet and High Speed USB (480 Mbps) are not supported Visual trigger Qualifies standard triggers by scanning all waveform acquisitions and comparing them to on-screen areas (geometric shapes). An unlimited number of areas can be defined with In, Out, or Don't Care as the qualifier for each area. A boolean expression can be defined using any combination of visual trigger areas to further qualify the events that get stored into acquisition memory. Shapes include rectangle, triangle, trapezoid, hexagon and user-defined. Parallel Bus: Trigger on a parallel bus data value. Parallel bus can be from 1 to 64 bits (from the digital and analog channels) in size. Supports Binary and Hex radices I²C Bus (option 5-SREMBD): Trigger on Start, Repeated Start, Stop, Address (7 or 10 bit), Data, or Address and Data on I²C buses up to 10 Mb/s I³C Bus (option 5-SRI3C) Trigger on Start, Repeated Start, Stop, Address, Data, I³C SDR Direct, I³C SDR Broadcast, Missing ACK, T-Bit Error, Broadcast Address Error, Hot-Join, HDR Restart, HDR Exit on I3C buses up to 10 Mb/s SPI Bus (option 5- SREMBD): Trigger on Slave Select, Idle Time, or Data (1-16 words) on SPI buses up to 20 Mb/s RS-232/422/485/UART Bus (option 5-SRCOMP): Trigger on Start Bit, End of Packet, Data, and Parity Error up to 15 Mb/s CAN Bus (option 5- SRAUTO): Trigger on Start of Frame, Type of Frame (Data, Remote, Error, or Overload), Identifier, Data, Identifier and Data, End Of Frame, Missing Ack, and Bit Stuff Error on CAN buses up to 1 Mb/s CAN FD Bus (option 5- SRAUTO): Trigger on Start of Frame, Type of Frame (Data, Remote, Error, or Overload), Identifier (Standard or Extended), Data (1-8 bytes), Identifier and Data, End Of Frame, Error (Missing Ack, Bit Stuffing Error, FD Form Error, Any Error) on CAN FD buses up to 16 Mb/s LIN Bus (option 5-SRAUTO): Trigger on Sync, Identifier, Data, Identifier and Data, Wakeup Frame, Sleep Frame, and Error on LIN buses up to 1 FlexRay Bus (option 5- SRAUTO): Trigger on Start of Frame, Indicator Bits (Normal, Payload, Null, Sync, Startup), Frame ID, Cycle Count, Header Fields (Indicator Bits, Identifier, Payload Length, Header CRC, and Cycle Count), Identifier, Data, Identifier and Data, End Of Frame, and Errors on FlexRay buses up to 10 Mb/s SENT Bus (option 5-SRAUTOSEN) Trigger on Start of Packet, Fast Channel Status and Data, Slow Channel Message ID and Data, and CRC Errors SPMI Bus (option 5-SRPM): Trigger on Sequence Start Condition, Reset, Sleep, Shutdown, Wakeup, Authenticate, Master Read, Master Write, Register Read, Register Write, Extended Register Read, Extended Register Write, Extended Register Read Long, Extended Register Write Long, Device Descriptor Block Master Read, Device Descriptor Block Slave Read, Register 0 Write, Transfer Bus Ownership, and Parity Error USB 2.0 LS/FS/HS Bus (option 5-SRUSB2): Trigger on Sync, Reset, Suspend, Resume, End of Packet, Token (Address) Packet, Data Packet, Handshake Packet, Special Packet, Error on USB buses up to 480 Mb/s Ethernet Bus (option 5-SRENET): Trigger on Start of Frame, MAC Addresses, MAC Q-tag, MAC Length/Type, MAC Data, IP Header, TCP Header, TCP/IPV4 Data, End of Packet, and FCS (CRC) Error on 10BASE-T and 100BASE-TX buses Trigger on Word Select, Frame Sync, or Data. Maximum data rate for I²S/LJ/RJ is 12.5 Mb/s. Maximum data rate Audio (I²S, LJ, RJ, TDM) Bus (option 5-SRAUDIO): for TDM is 25 Mb/s MIL-STD-1553 Bus (option 5-SRAERO): Trigger on Sync, Command (Transmit/Receive Bit, Parity, Subaddress / Mode, Word Count / Mode Count, RT Address), Status (Parity, Message Error, Instrumentation, Service Request, Broadcast Command Received, Busy, Subsystem Flag, Dynamic Bus Control Acceptance, Terminal Flag), Data, Time (RT/IMG), and Error (Parity Error, Sync Error, Manchester Error, Non-contiguous Data) on MIL-STD-1553 buses ARINC 429 Bus (option 5- SRAERO): Trigger on Word Start, Label, Data, Label and Data, Word End, and Error (Any Error, Parity Error, Word Error, Gap Error) on ARINC 429 buses up to 1 Mb/s RF Magnitude vs. Time and RF Frequency vs. Time (option 5-SV-RFVT): Trigger on edge, pulse width and timeout events #### **Acquisition system** Sample Acquires sampled values **Peak Detect** Captures glitches as narrow as 640 ps at all sweep speeds **Averaging** From 2 to 10,240 waveforms Maximum averaging speed = 180 waveforms/s **Fast Hardware Averaging** An acquisition mode for acquiring a large number of averages in a short amount of time. Fast hardware > averaging optimizes the acquisition path, reducing storage truncation error and smoothing out fine scale nonlinearity imperfections via an optional offset dithering technique. This feature is available through programmatic interface commands. From 2 to 1.000.000 waveforms ### Maximum averaging speed = 32,000 waveforms/s | Envelope | Min-max envelope reflecting Peak Detect data over multiple acquisitions | |--------------|--| | High Res | Applies a unique Finite Impulse Response (FIR) filter for each sample rate that maintains the maximum bandwidth possible for that sample rate while preventing aliasing and removing noise from the oscilloscope amplifiers and ADC above the usable bandwidth for the selected sample rate. | | | High Res mode always provides at least 12 bits of vertical resolution and extends all the way to 16 bits of vertical resolution at \leq 125 MS/s sample rates. | | FastAcq® | FastAcq optimizes the instrument for analysis of dynamic signals and capture of infrequent events by capturing >500,000 wfms/s (one channel active; >100K wfms/s with all channels active). | | Roll mode | Scrolls sequential waveform points across the display in a right-to-left rolling motion, at timebase speeds of 40 ms/div and slower, when in Auto trigger mode. | | History mode | Makes use of the maximum record length, allowing you to capture many triggered acquisitions, stop when you see something of interest, and quickly review all stored triggered acquisitions. The number of available acquisitions stored in history is (Maximum record length) / (Current record length setting). | | FastFrame™ | Acquisition memory divided into segments. | | | Maximum trigger rate >5,000,000 waveforms per second | | | Minimum frame size = 50 points | | | Maximum Number of Frames: For frame size ≥ 1,000 points, maximum number of frames = record length / frame size. | | | For 50 point frames, maximum number of frames = 1,000,000 | ##
Waveform measurements **Cursor types** Waveform, V Bars, H Bars, V&H Bars, and Polar (XY/XYZ plots only) DC voltage measurement accuracy, Average acquisition mode | Measurement Type | DC Accuracy (In Volts) | |---|---| | Average of ≥ 16 waveforms | ±((DC Gain Accuracy) * reading - (offset - position) + Offset Accuracy + 0.1 * V/div setting) | | Delta volts between any two averages of ≥ 16 waveforms acquired with the same oscilloscope setup and ambient conditions | ±(DC Gain Accuracy * reading + 0.05 div) | #### **Automatic measurements** 36, of which an unlimited number can be displayed as either individual measurement badges or collectively in a measurement results table | Amplitude measurements | Amplitude, Maximum, Minimum, Peak-to-Peak, Positive Overshoot, Negative Overshoot, Mean, RMS, AC RMS, Top, Base, and Area | | |------------------------------------|---|--| | Timing measurements | Period, Frequency, Unit Interval, Data Rate, Positive Pulse Width, Negative Pulse Width, Skew, Delay, Rise Time, Fall Time, Phase, Rising Slew Rate, Falling Slew Rate, Burst Width, Positive Duty Cycle, Negative Duty Cycle, Time Outside Level, Setup Time, Hold Time, Duration N-Periods, High Time, Low Time, Time to Minimum, and Time to Maximum | | | Jitter measurements (standard) | TIE and Phase Noise | | | Measurement statistics | Mean, Standard Deviation, Maximum, Minimum, and Population. Statistics are available on both the current acquisition and all acquisitions | | | Reference levels | User-definable reference levels for automatic measurements can be specified in either percent or units. Reference levels can be set to global for all measurements, per source channel or signal, or unique for each measurement | | | Gating | Screen, Cursors, Logic, Search, or Time. Specifies the region of an acquisition in which to take measurements. Gating can be set to Global (affects all measurements set to Global) or Local (all measurements can have a unique Time gate setting; only one Local gate is available for Screen, Cursors, Logic, and Search actions). | | | Measurement plots | Histogram, Time Trend, Spectrum, Eye Diagram (TIE measurement only), Phase Noise (Phase Noise measurement only) | | | Measurement limits | Pass/fail testing for user-definable limits on measurement values. Act on event for measurement value failures include Save Screen Capture, Save Waveform, System Request (SRQ), and Stop Acquisitions | | | Jitter analysis (option 5-DJA) add | ds the following: | | | Measurements | Jitter Summary, TJ@BER, RJ- δδ, DJ- δδ, PJ, RJ, DJ, DDJ, DCD, SRJ, J2, J9, NPJ, F/2, F/4, F/8, Eye Height, Eye Height@BER, Eye Width, Eye Width@BER, Eye High, Eye Low, Q-Factor, Bit High, Bit Low, Bit Amplitude, DC Common Mode, AC Common Mode (Pk-Pk), Differential Crossover, T/nT Ratio, SSC Freq Dev, SSC Modulation Rate | | | Measurement plots | Eye Diagram and Jitter Bathtub | | | | Fast eye rendering: Shows the Unit Intervals (UIs) that define the boundaries of the eye along with a user specified number of surrounding UIs for added visual context | | | | Complete eye rendering: Shows all valid Unit Intervals (UIs) | | | Measurement limits | Pass/fail testing for user-definable limits on measurement values. Act on event for measurement value failures include Save Screen Capture, Save Waveform, System Request (SRQ), and Stop Acquisitions | | | | Automated mask pass/fail testing with mask autofit | | ## Power analysis (option 5-PWR) adds the following: Input Analysis (Frequency, V_{RMS}, I_{RMS}, voltage and current Crest Factors, True Power, Apparent Power, Reactive Measurements Power, Power Factor, Phase Angle, Harmonics, Inrush Current, Input Capacitance) Amplitude Analysis (Cycle Amplitude, Cycle Top, Cycle Base, Cycle Maximum, Cycle Minimum, Cycle Peak-to- Peak) Timing Analysis (Period, Frequency, Negative Duty Cycle, Positive Duty Cycle, Negative Pulse Width, Positive Pulse Width) Switching Analysis (Switching Loss, dv/dt, di/dt, Safe Operating Area, R_{DSon}) Magnetic Analysis (Inductance, I vs. Intg (V), Magnetic Loss, Magnetic Property) Output Analysis (Line Ripple, Switching Ripple, Efficiency, Turn-on Time, Turn-off Time) Frequency Response Analysis (Control Loop Response Bode Plot, Power Supply Rejection Ratio, Impedance) **Measurement Plots** Harmonics Bar Graph, Switching Loss Trajectory Plot, and Safe Operating Area **Measurement limits** Pass/fail testing for user-definable limits on measurement values. Act on event for measurement value failures include Save Screen Capture, Save Waveform, System Request (SRQ), and Stop Acquisitions #### Inverter Motor Drive Analysis (option 5-IMDA) adds the following: Measurements Input Analysis (Power Quality, Harmonics, Input Voltage, Input Current, and Input Power) > Ripple analysis (Line Ripple and Switching Ripple) Output analysis (Phasor Diagram and Efficiency) DQ0 analysis (DQ0) Requires option 5-IMDA-DQ0 Measurement plots Harmonics Bar Graph and Phasor Diagram #### Invertor Motor Drive Analysis Mechanical Measurements (option 5-IMDA-MECH: requires option 5-IMDA) adds the following: Sensors supported Hall sensors, QEI (Quadrature Encoder Interface) Electrical Analysis (Power Quality, Harmonics, Ripple, DQ0, and Efficiency) Measurements Mechanical Analysis (Speed, Acceleration, Angle (QEI method), Direction, and Torque) **Measurement plots** Time Trend, Acquisition Trend, Phasor Diagram, Harmonics Bar Graph, DQ0, and Histogram (speed distribution) #### Digital power management (option 5-DPM) adds the following: Measurements Ripple Analysis (Ripple) Transient Analysis (Overshoot, Undershoot, Turn On Overshoot, DC Rail Voltage) Power Sequence Analysis (Turn-on, Turn-off) Jitter Analysis (TIE, PJ, RJ, DJ, Eye Height, Eye Width, Eye High, Eye Low) PI/SI Analysis (PSIJ) #### Digital Power Management Basic (option 5-DPMBAS) adds the following: Measurements Ripple Analysis (Ripple) > Transient Analysis (Overshoot, Undershoot) Power Sequence Analysis (Turn-on, Turn-off) LVDS debug and analysis option (option 5-DBLVDS) adds the following: **Data Lane Measurements** Generic Test (Unit Interval, Rise Time, Fall Time, Data Width, Data Intra Skew (PN), Data Inter Skew (Lane-to- Lane), Data Peak-to-Peak) Jitter Test (AC Timing, Clock Data Setup Time, Clock Data Hold Time, Eye Diagram (TIE), TJ@BER, DJ Delta, RJ Delta, DDJ, De-Emphasis Level) **Clock Lane Measurements** Generic Test (Frequency, Period, Duty Cycle, Rise Time, Fall Time, Clock Intra Skew (PN), Clock Peak-to-Peak) Jitter Test (TIE, DJ, RJ) SSC On (Mod Rate, Frequency Deviation Mean) | Waveform math | | | |---------------------------------|---|--| | Number of math waveforms | Unlimited | | | Arithmetic | Add, subtract, multiply, and divide waveforms and scalars | | | Algebraic expressions | Define extensive algebraic expressions including waveforms, scalars, user-adjustable variables, and results of parametric measurements. Perform math on math using complex equations. For example (Integral (CH1 - Mean(CH1)) X 1.414 X VAR1) | | | Math functions | Invert, Integrate, Differentiate, Square Root, Exponential, Log 10, Log e, Abs, Ceiling, Floor, Min, Max, Degree Radians, Sin, Cos, Tan, ASin, ACos, and ATan | | | Relational | Boolean result of comparison >, <, \geq , \leq , =, and \neq | | | Logic | AND, OR, NAND, NOR, XOR, and EQV | | | Filtering function (standard) | Loading of user-definable filters. Users specify a file containing the coefficients of the filter. | | | Filtering function (option 5-UD | FLT) | | | Filter types | Low pass, High pass, Band pass, Band stop, All pass, Hilbert, Differentiator, and Custom | | | Filter response types | Butterworth, Chebyshev I, Chebyshev II, Elliptical, Gaussian, and Bessel-Thomson | | | FFT functions | Spectral Magnitude and Phase, and Real and Imaginary Spectra | | | FFT vertical units | Magnitude: Linear and Log (dBm) | | | | Phase: Degrees, Radians, and Group Delay | | | FFT window functions | Hanning, Rectangular, Hamming, Blackman-Harris, Flattop2, Gaussian, Kaiser-Bessel, and TekExp | | ## **Spectrum View** | Center Frequency | Limited by instrument analog bandwidth | |----------------------------|---| | Span | 18.6 Hz to 312.5 MHz | | | 18.6 Hz to 500 MHz (with option 5-SV-BW-1) | | | Coarse adjustment in a 1-2-5 sequence | | RF Measurements | Channel Power (CHP), Adjacent Channel Power Ratio (ACPR), and Occupied Bandwidth (OBW) measurements on Spectrum View trace data and display | | RF vs. Time Traces | Magnitude vs. time, Frequency vs. time, Phase vs. time (with option 5-SV-RFVT) | | RF vs. Time Trigger | Edge, pulse width, and timeout trigger on RF Magnitude vs. Time and RF Frequency vs. Time (with option 5-SV-RFVT) | | Spectrograms | RF Frequency vs. Time vs. Amplitude display with frequency on x-axis, time on y-axis, and power level indicated by variations in color (with option 5-SV-RFVT) | |
Resolution Bandwidth (RBW) | 93 μHz to 62.5 MHz | | | 93 μHz to 100 MHz (with option 5-SV-BW-1) | | IQ capture | The data is stored as in-phase and quadrature (I&Q) samples and precise synchronization is maintained between the time domain data and the I&Q data. | | | When RF vs. Time traces are activated (with option 5-SV-RFVT), IQ data can be captured and exported to file for more analysis within 3 rd party applications. | | | The max acquisition time varies with span and sample rate. At 6.25 GS/s and 500 MHz span, the max acquisition time is 0.086 seconds. For 312.5 MHz span, the max acquisition time is 0.172 seconds. For 40 MHz span, the max acquisition time is 0.687 seconds. For 1 MHz span, the max acquisition time is 43.980 seconds. | | | | ## Window types and factors | Window type | Factor | |-----------------|--------| | Blackman-Harris | 1.90 | | Flat-Top 2 | 3.77 | | Hamming | 1.30 | | Hanning | 1.44 | | Kaiser-Bessel | 2.23 | | Rectangular | 0.89 | | Spectrum Time | FFT Window Factor / RBW | |---------------|-------------------------| | | | | Reference level | Reference level is automatically set by the analog channel Volts/div setting Setting range: -42 dBm to +44 dBm | | |---------------------------------|---|--| | Vertical Position | -100 divs to +100 divs | | | Vertical units | dBm, dBμW, dBmV, dBμV, dBmA, dBμA | | | Vertical scaling | Linear, Log | | | Horizontal scaling | Linear, Log | | | Multi-channel spectrum analysis | Each FlexChannel input can be configured with Spectrum View, RF vs. Time traces (with option RFVT), and Spectrogram (with option RFVT). Multiple RF measurements can be performed simultaneously across channels. Spectrum Time and Center Frequency settings can be unlocked and moved independently from each other across channels. All Spectrum View channels must share the same Span, Resolution Bandwidth and Window Type. | | | Search | | | | Number of searches | Unlimited | | | Search types | Search through long records to find all occurrences of user specified criteria including edges, pulse widths, timeouts, runt pulses, window violations, logic patterns, setup & hold violations, rise/fall times, and bus protocol events. Search results can be viewed in the Waveform View or in the Results table. | | | Save | | | | Save | Save files directly to the oscilloscope, to a remote network drive, or to your TekDrive collaboration workspace. | | | Waveform type | Tektronix Waveform Data (.wfm), Comma Separated Values (.csv), MATLAB (.mat) | | | Waveform gating | Cursors, Screen, Resample (save every nth sample) | | | Screen capture type | Portable Network Graphic (*.png), 24-bit Bitmap (*.bmp), JPEG (*.jpg) | | | Setup type | Tektronix Setup (.set) | | | Report type | Adobe Portable Documents (.pdf), Single File web Pages (.mht) | | | Session type | Tektronix Session Setup (.tss) | | | Display | | | | Display type | 15.6 in. (395 mm) liquid-crystal TFT color display | | | Display resolution | 1,920 horizontal × 1,080 vertical pixels (High Definition) | |-------------------------------|---| | Display modes | Overlay: traditional oscilloscope display where traces overlay each other | | | Stacked: display mode where each waveform is placed in its own slice and can take advantage of the full ADC range while still being visually separated from other waveforms. Groups of channels can also be overlaid within a slice to simplify visual comparison of signals. | | Zoom | Horizontal and vertical zooming is supported in all waveform and plot views. | | Interpolation | Sin(x)/x and Linear | | Waveform styles | Vectors, dots, variable persistence, and infinite persistence | | Graticules | Movable and fixed graticules, selectable between Grid, Time, Full, and None | | Color palettes | Normal and inverted for screen captures | | | Individual waveform colors are user-selectable | | Format | YT, XY, and XYZ | | Local Language User Interface | English, Japanese, Simplified Chinese, Traditional Chinese, French, German, Italian, Spanish, Portuguese, Russian, Korean | | Local Language Help | English, Japanese, Simplified Chinese | | Arbitrary-Function Generat | or (optional) | | Modes of operation | Off, Continuous, Burst | | Function types | Arbitrary, sine, square, pulse, ramp, triangle, DC level, Gaussian, Lorentz, exponential rise/fall, sin(x)/x, random noise, Haversine, Cardiac | | Sine waveform | | | Frequency range | 0.1 Hz to 100 MHz | | Frequency setting resolution | 0.1 Hz | | Frequency accuracy | 130 ppm (frequency \leq 10 kHz), 50 ppm (frequency $>$ 10 kHz) | | | This is for Sine, Ramp, Square and Pulse waveforms only. | | Amplitude range | 20 mV $_{pp}$ to 5 V $_{pp}$ into Hi-Z; 10 mV $_{pp}$ to 2.5 V $_{pp}$ into 50 Ω | | Amplitude flatness, typical | ±0.5 dB at 1 kHz | | | | ±1.5 dB at 1 kHz for < 20 mV_{pp} amplitudes Total harmonic distortion, typical 1% for amplitude ≥ 200 mV_{pp} into 50 Ω load 2.5% for amplitude > 50 mV AND < 200 mV_{pp} into 50 Ω load This is for Sine wave only. Spurious free dynamic range, typical 40 dB (V_{pp} ≥ 0.1 V); 30 dB (V_{pp} ≥ 0.02 V), 50 Ω load Square and pulse waveform Frequency range 0.1 Hz to 50 MHz Frequency setting resolution 0.1 Hz Frequency accuracy 130 ppm (frequency ≤ 10 kHz), 50 ppm (frequency > 10 kHz) 20 mV_{pp} to 5 V_{pp} into Hi-Z; 10 mV_{pp} to 2.5 V_{pp} into 50 Ω Amplitude range **Duty cycle range** 10% - 90% or 10 ns minimum pulse, whichever is larger Minimum pulse time applies to both on and off time, so maximum duty cycle will reduce at higher frequencies to maintain 10 ns off time **Duty cycle resolution** Minimum pulse width, typical 10 ns. This is the minimum time for either on or off duration. Rise/Fall time, typical 5 ns, 10% - 90% Pulse width resolution Overshoot, typical < 6% for signal steps greater than 100 mV_{pp} This applies to overshoot of the positive-going transition (+overshoot) and of the negative-going (-overshoot) transition 100 ps Asymmetry, typical ±1% ±5 ns, at 50% duty cycle Jitter, typical < 60 ps TIE_{RMS} , \geq 100 mV_{pp} amplitude, 40%-60% duty cycle Ramp and triangle waveform Frequency range 0.1 Hz to 1 MHz Frequency setting resolution 0.1 Hz Frequency accuracy 130 ppm (frequency ≤ 10 kHz), 50 ppm (frequency > 10 kHz) 20 mV_{pp} to 5 V_{pp} into Hi-Z; 10 mV_{pp} to 2.5 V_{pp} into 50 Ω Amplitude range Variable symmetry 0% - 100% Symmetry resolution 0.1% ±2.5 V into Hi-Z DC level range ± 1.25 V into 50 Ω Random noise amplitude range 20 mV_{pp} to 5 V_{pp} into Hi-Z 10 mV $_{pp}$ to 2.5 V_{pp} into 50 Ω Sin(x)/x **Maximum frequency** 4 MHz Gaussian pulse, Haversine, and Lorentz pulse **Maximum frequency** 10 MHz Lorentz pulse Frequency range 0.1 Hz to 10 MHz Amplitude range 20 mV $_{pp}$ to 2.4 V_{pp} into Hi-Z 10 mV $_{pp}$ to 1.2 V_{pp} into 50 Ω Cardiac 0.1 Hz to 1 MHz Frequency range Amplitude range 20 mV $_{pp}$ to 5 V $_{pp}$ into Hi-Z 10 mV $_{pp}$ to 2.5 V_{pp} into 50 Ω **Arbitrary** Memory depth 1 to 128 k 20 mV $_{pp}$ to 5 V $_{pp}$ into Hi-Z Amplitude range 10 mV_{pp} to 2.5 V_{pp} into 50 Ω Repetition rate 0.1 Hz to 50 MHz Sample rate 250 MS/s Signal amplitude accuracy ±[(1.5% of peak-to-peak amplitude setting) + (1.5% of absolute DC offset setting) + 1 mV] (frequency = 1 kHz) Signal amplitude resolution 1 mV (Hi-Z) $500 \mu V (50 Ω)$ Sine and ramp frequency accuracy 1.3×10^{-4} (frequency $\leq 10 \text{ kHz}$) 5.0×10^{-5} (frequency >10 kHz) DC offset range ±2.5 V into Hi-Z | +1 | 25 | V | into | 50 | 0 | |----|-----|---|-------|----|----| | エリ | .ZJ | ٧ | IIILO | JU | 77 | DC offset resolution 1 mV (Hi-Z) $500 \mu V (50 \Omega)$ ±[(1.5% of absolute offset voltage setting) + 1 mV] DC offset accuracy Add 3 mV of uncertainty per 10 °C change from 25 °C ambient Digital volt meter (DVM) Measurement types DC, AC_{RMS}+DC, AC_{RMS} Voltage resolution 4 digits Voltage accuracy DC: \pm ((1.5% * |reading - offset - position|) + (0.5% * |(offset - position)|) + (0.1 * Volts/div)) De-rated at 0.100%/°C of |reading - offset - position| above 30 °C Signal ± 5 divisions from screen center AC: ± 2% (40 Hz to 1 kHz) with no harmonic content outside 40 Hz to 1 kHz range AC, typical: \pm 2% (20 Hz to 10 kHz) For AC measurements, the input channel vertical settings must allow the V_{PP} input signal to cover between 4 and 10 divisions and must be fully visible on the screen Trigger frequency counter Resolution 8-digits **Accuracy** ±(1 count + time base accuracy * input frequency) The signal must be at least 8 $\mbox{mV}_{\mbox{\scriptsize pp}}$ or 2 div, whichever is greater. Maximum input frequency 10 Hz to maximum bandwidth of the analog channel The signal must be at least 8 mV_{pp} or 2 div, whichever is greater. **Processor system** Host processor Intel i5-8400H (2.5 GHz, 64-bit, quad core processor) **Operating system** Default instrument: Closed Linux Instrument with option 5B-WIN installed: Microsoft Windows 10 7 | Standard SSD with Embedded
OS | ≥ 250 GB removable solid state drive | | | |---
--|---|--| | Solid State Drive (SSD) with
Microsoft Windows 10 OS
(option 5B-WIN) | ≥ 512 GB SSD. Form factor is a 2.5-inch SSD with a SATA-3 interface. This drive is customer installable and includes the Microsoft Windows 10 Enterprise IoT 2016 LTSB (64-bit) operating system | | | | nput-Output ports | | | | | DisplayPort connector | A 20-pin DisplayPort conne | ector; connect to show the oscilloscope display on an external monitor or projecto | | | DVI connector | A 29-pin DVI-D connector; connect to show the oscilloscope display on an external monitor or projector | | | | VGA | DB-15 female connector; co | connect to show the oscilloscope display on an external monitor or projector | | | Probe compensator signal, typi | cal | | | | Connection: | Connectors are located on | n the lower right-hand side of the instrument | | | Amplitude: | 0 to 2.5 V | | | | Frequency: | 1 kHz | | | | Source impedance: | 1 kΩ | | | | External reference input | The time-base system can | phase lock to an external 10 MHz reference signal (±4 ppm). | | | USB interface (Host, Device | Front panel USB Host ports: Two USB 2.0 Hi-Speed ports, one USB 3.0 SuperSpeed port | | | | ports) | Rear panel USB Host ports: Two USB 2.0 Hi-Speed ports, two USB 3.0 SuperSpeed ports | | | | | Rear panel USB Device por | ort: One USB 3.0 SuperSpeed Device port providing USBTMC support | | | Ethernet interface | 10/100/1000 Mb/s | | | | Auxiliary output | | r. Output can be configured to provide a positive or negative pulse out when the nternal oscilloscope reference clock out, or an AFG sync pulse | | | | Characteristic | Limits | | | | Vout (HI) | ≥ 2.5 V open circuit; ≥ 1.0 V into a 50 Ω load to ground | | | | Vout (LO) | \leq 0.7 V into a load of \leq 4 mA; \leq 0.25 V into a 50 Ω load to ground | | | | | | | | Kensington-style lock | Rear-panel security slot cou | onnects to standard Kensington-style lock | | | .tononigton otylo look | . toai parior occurry olot cor | Thiosa to standard from inglott of the foot | | ⁷ Option 5-WIN is not available for MSO58LP instrument. LXI Class: LXI Core 2011 Version: 1.4 #### Power source Power **Power consumption** 400 Watts maximum Source voltage $100 - 240 \text{ V} \pm 10\%$ at 50 Hz to 60 Hz 115 V ±10% at 400 Hz ±10% ## Physical characteristics **Dimensions** Height: 12.2 in (309 mm), feet folded in, handle to back Height: 14.6 in (371 mm) feet folded in, handle up Width: 17.9 in (454 mm) from handle hub to handle hub Depth: 8.0 in (205 mm) from back of feet to front of knobs, handle up Depth: 11.7 in (297.2 mm) feet folded in, handle to the back **Weight** < 28 lbs (12.5 kg) Cooling The clearance requirement for adequate cooling is 2.0 in (50.8 mm) on the right side of the instrument (when viewed from the front) and on the rear of the instrument Rackmount configuration 7U (with optional RM5 Rackmount Kit) #### **Environmental specifications** **Temperature** Operating +0 °C to +50 °C (32 °F to 122 °F) Non-operating -20 °C to +60 °C (-4 °F to 140 °F) Humidity Operating 5% to 90% relative humidity (% RH) at up to +40 °C 5% to 55% RH above +40 °C up to +50 °C, noncondensing, and as limited by a maximum wet-bulb temperature of +39 °C Non-operating 5% to 90% relative humidity (% RH) at up to +40 °C 5% to 39% RH above +40 °C up to +50 °C, noncondensing, and as limited by a maximum wet-bulb temperature of +39 °C Altitude **Operating** Up to 3,000 meters (9,843 feet) Non-operating Up to 12,000 meters (39,370 feet) #### EMC, Environmental, and Safety Regulatory CE marked for the European Union and UL approved for the USA and Canada RoHS compliant #### **Software** **IVI** driver Provides a standard instrument programming interface for common applications such as LabVIEW, LabWindows/ CVI, Microsoft .NET, and MATLAB. Compatible with Python, C/C++/C# and many other languages through VISA. e*Scope® Enables control of the oscilloscope over a network connection through a standard web browser. Simply enter the IP address or network name of the oscilloscope and a web page will be served to the browser. Transfer and save settings, waveforms, measurements, and screen images or make live control changes to settings on the oscilloscope directly from the web browser. Optionally configure e*Scope authentication to password protect access to control and view the oscilloscope. **TekDrive** Upload, store, organize, search, download, and share any file type from any connected device. TekDrive is natively > integrated into the 5 Series MSO for seamless sharing and recalling of files - no USB stick is required. Analyze and explore standard files like .wfm, .isf, .tss, and .csv, directly in a browser. Visit www.tek.com/software/tekdrive to learn more. SignalVu-PC Advanced vector signal analysis software that can run directly on your 5 Series MSO or on a separate Windows PC. Requires option 5-SV-RFVT installed on the 5 Series MSO. Requires Connect license (CONxx-SVPC) installed on SignalVu-PC, xx is NL for Node Locked license or FL for Floating License. LXI Web interface Connect to the oscilloscope through a standard Web browser by simply entering the oscilloscope's IP address > or network name in the address bar of the browser. The Web interface enables viewing of instrument status and configuration, status and modification of network settings, and instrument control through the e*Scope web-based remote control. All web interaction conforms to LXI Core specification, version 1.4. **Programming Examples** Programming with the 4/5/6 Series platforms has never been easier. With a programmers manual and a GitHub site you have many commands and examples to help you get started remotely automating your instrument. See HTTPS://GITHUB.COM/TEKTRONIX/PROGRAMMATIC-CONTROL-EXAMPLES. ## Ordering information Use the following steps to select the appropriate instrument and options for your measurement needs. ### Step 1 Start by selecting a 5 Series MSO model based on the number of FlexChannel inputs you need. Each FlexChannel input supports 1 analog or 8 digital input signals, interchangeably. | Model | Number of FlexChannels | |--------|------------------------| | MSO54B | 4 | | MSO56B | 6 | | MSO58B | 8 | #### Each model includes One passive analog probe per FlexChannel: - 350 MHz or 500 MHz bandwidth models: TPP0500B 500 MHz probes - 1 GHz or 2 GHz bandwidth models: TPP1000 1 GHz probes Installation and safety manual (translated in English, Japanese, Simplified Chinese) Embedded Help Front cover with integrated accessory pouch Power cord Calibration certificate documenting traceability to National Metrology Institute(s) and ISO9001/ISO17025 quality system registration One-year warranty covering all parts and labor on the instrument. One-year warranty covering all parts and labor on included probes #### Step 2 Add instrument functionality by adding an option bundle Three classes of option bundles are offered (Starter, Pro, Ultimate), providing a range of options depending on your budget and application needs. For detailed information on the current contents of each bundle, please visit our website and view the software bundle brochure at www.tek.com/document/brochure/software-bundlesfor-the-4-5-and-6-series-mso-oscilloscopes. - 1. Starter bundle offers the most common serial bus decoding, protocol analysis, and hardware enhancing options bundled together. - 2. Pro bundles are application-specific (Serial trigger and decode, Power Integrity, Signal Integrity, Automotive, Automated Compliance Test, Military Government Aerospace) and include all options from the Starter bundle. - 3. Ultimate bundle includes all options from the Starter bundle in addition to the all options from all Pro bundles. | 1 Year license | Perpetual license | Bundle description | |-----------------|-------------------|--| | 5-STARTER-1Y | | Includes I2C, SPI, RS-232/422/UART serial trigger and analysis, AFG (Arbitrary/Function Generator) | | Table continued | | | | 1 Year license | Perpetual license | Bundle description | |-----------------|-------------------|--| | 5-PRO-SERIAL-1Y | 5-PRO-SERIAL-PER | Includes 5-STARTER plus 125 MS/ch record length, additional select serial analysis options | | 5-PRO-POWER-1Y | 5-PRO-POWER-PER | Includes 5-STARTER plus 125 MS/ch record length, select power analysis options | | 5-PRO-SIGNAL-1Y | 5-PRO-SIGNAL-PER | Includes 5-STARTER plus 125 MS/ch record length, advanced Jitter and select analysis options | | 5-PRO-COMPL-1Y | 5-PRO-COMPL-PER | Includes 5-STARTER plus 125 MS/ch record length, advanced select automated compliance test options | | 5-PRO-AUTO-1Y | 5-PRO-AUTO-PER | Includes 5-STARTER plus 125 MS/ch record length, advanced Jitter and select automotive analysis options | | 5-PRO-MILGOV-1Y | 5-PRO-MILGOV-PER | Includes 5-STARTER plus 125 MS/ch record length, advanced Jitter, mask test, and select serial analysis options | | 5-ULTIMATE-1Y | 5-ULTIMATE-PER | Includes 5-STARTER, all 5-PRO bundle options plus 500 MS/ch record length, RF vs. Time traces, triggers, Spectrograms, and IQ capture, extended Spectrum View capture bandwidth, and video trigger options | Each purchased bundle has two duration options: - A 1-year subscription includes all features and free upgrades for the purchased bundle for one year; after which time the features are disabled. Additional 1-year subscription can be
purchased for the selected bundle. - A perpetual subscription enables all features for the purchased bundle permanently. A perpetual subscription includes 1-year of free upgrades to the bundle feature set. After the year, the feature set is frozen to those enabled by the last update made. Perpetual bundles can continue to receive upgrades following the 1 year activation period with the purchase of a maintenance license. Maintenance license information can be found in the maintenance license table below and must be purchased for an existing Starter, Pro, or Ultimate bundle. | Maintenance license | Description | |---------------------|---| | 5-STARTER-MNT-1Y | Includes Perpetual Starter Bundle updates for 1 Year on 5 Series MSO | | 5-PRO-MNT-1Y | Includes Perpetual Pro Bundle updates for 1 Year on 5 Series MSO | | 5-ULTIMATE-MNT-1Y | Includes Perpetual Ultimate Bundle updates for 1 Year on 5 Series MSO | ### Step 3 Configure your oscilloscope by selecting the analog channel bandwidth you need Choose the bandwidth you need today by choosing one of these bandwidth options. You can upgrade it later by purchasing an upgrade option. | Bandwidth
Option | Bandwidth | |---------------------|-----------| | 5-BW-350 | 350 MHz | | 5-BW-500 | 500 MHz | | 5-BW-1000 | 1 GHz | | 5-BW-2000 | 2 GHz | ## Step 4 #### Add instrument functionality Instrument functionality can be ordered with the instrument or later as an upgrade kit. | Instrument option | Built-in functionality | |--------------------|--| | 5-RL-125M | Extend record length from 62.5 Mpoints/channel to 125 Mpoints/channel | | 5-RL-250M | Extend record length from 62.5 Mpoints/channel to 250 Mpoints/channel | | 5-RL-500M | Extend record length from 62.5 Mpoints/channel to 500 Mpoints/channel | | 5B-WIN | Add removable SSD with Microsoft Windows 10 operating system license | | 5-AFG | Add Arbitrary / Function Generator | | 5-SEC ⁸ | Add enhanced security for instrument declassification and password-protected enabling and disabling of all USB ports and firmware upgrade. | ## Step 5 Add optional protocol triggering, decode, and search capabilities Choose the protocol support you need today by choosing from these analysis options. You can upgrade later by purchasing an upgrade kit. | Instrument option | Protocols supported | |-------------------|--| | 5-RFNFC | ISO/IEC 15693, 14443A, 14443B, and FeliCa (decode and search only) | | 5-SRAERO | Aerospace (MIL-STD-1553, ARINC 429) | | 5-SRAUDIO | Audio (I ² S, LJ, RJ, TDM) | | 5-SRAUTO | Automotive (CAN, CAN FD, LIN, FlexRay, and CAN symbolic decoding) | | 5-SRAUTOEN1 | 100BASE-T1 Automotive Ethernet serial analysis | | 5-SRAUTOSEN | Automotive sensor (SENT) | | 5-SRCOMP | Computer (RS-232/422/485/UART) | | 5-SRCPHY | MIPI C-PHY Vx.x (DSI-2, CSI-2 decode and search only) | | 5-SRCXPI | CXPI (decode and search only) | | 5-SRDPHY | MIPI D-PHY (DSI-1, CSI-2 decode and search only) | | 5-SREMBD | Embedded (I ² C, SPI) | | 5-SRENET | Ethernet (10BASE-T, 100BASE-TX) | | Table continued | • | ⁸ This option must be purchased at the same time as the instrument. Not available as an upgrade. | Instrument option | Protocols supported | |-------------------|--| | 5-SRESPI | eSPI (decode and search only) | | 5-SRETHERCAT | EtherCAT (decode and search only) | | 5-SR8B10B | 8B/10B (decode and search only) | | 5-SRI3C | MIPI I3C | | 5-SRMANCH | Manchester (decode and search only) | | 5-SRMDIO | MDIO (decode and search only) | | 5-SRNRZ | NRZ (decode and search only) | | 5-SRONEWIRE | One wire (1-Wire decode and search only) | | 5-SRPM | | | 5-SRPSI5 | PSI5 (decode and search only) | | 5-SRSDLC | Synchronous Data Link Control Protocol Decode & Search | | 5-SRSMBUS | SMBus (decode and search only) | | 5-SRSPACEWIRE | Spacewire (decode and search only) | | 5-SRSVID | SVID | | 5-SRUSB2 | USB (USB2.0 LS, FS, HS) ⁹ | | 5-SREUSB2 | eUSB2.0 (decode and search only) | Differential serial bus? Be sure to check Add analog probes and adapters for differential probes. Add third party serial bus decode and analysis capabilities Third-party applications are available that provide serial bus decode and analysis capabilities to use on the 5 Series MSO. Use of the third-party software applications require a Windows 10 SSD (option 5B-WIN). Please see additional information at prodigytechno.com/oscilloscope-based-protocol-decode-software/ ## Step 6 Add optional serial bus compliance testing Choose the serial compliance testing packages you need today by choosing from these options. You can upgrade later by purchasing an upgrade kit. All options in the table below require option 5B-WIN (SSD with Microsoft Windows 10 operating system). | Instrument Option | Serial Buses Supported | | |-------------------|---|--| | 5-CMAUTOEN | Automotive Ethernet (100Base-T1, 1000Base-T1) automated compliance test solution. | | | | ≥2 GHz bandwidth required for 1000BASE-T1 | | | 5-CMAUTOEN10 | Automotive Ethernet (10BASE-T1S Short Reach) automated compliance test solution. | | | 5-AUTOEN-BND | Automotive Ethernet Compliance, Signal Separation, PAM3 Analysis, 100Base-T1 Decode software (requires options 5-DJA) | | | 5-AUTOEN-SS | Automotive Ethernet Signal Separation | | | Table continued | · | | ⁹ USB high-speed supported only on models with ≥1 GHz bandwidth | Instrument Option | Serial Buses Supported | |-------------------|---| | 5-CMAUTOEN10 | Automotive Ethernet (10Base-T1S Short Reach) automated compliance test solution | | 5-CMINDUEN10 | Industrial Ethernet (10Base-T1L Long Reach) automated compliance test solution | | 5-CMENET | Ethernet automated compliance test solution (10BASE-T/100BASE-T/100BASE-T/ | | | ≥1 GHz bandwidth required for 1000BASE-T | | 5-CMENETML | Multilane Ethernet (10Base-T, 100Base-T, 1000Base-T) automated compliance test solution | | 5-CMUSB2 | USB2.0 automated compliance test solution. | | | Requires TDSUSBF USB test fixture | | | ≥2 GHz bandwidth required for high-speed USB | # Step 7 Add optional analysis capabilities | Instrument option | Advanced analysis | |---------------------------|--| | 5-DBLVDS | TekExpress automated LVDS test solution (requires options 5-DJA and 5B-WIN) | | 5-DJA | Advanced Jitter and Eye Analysis | | 5-DPM | Digital Power Management | | 5-DPMBAS | Basic Digital Power Management | | 5-IMDA ¹⁰ | Inverter Motor Drive Analysis | | 5-IMDA-DQ0 ¹⁰ | DQ0 feature for Inverter Motor Drive Analysis (requires option 5-IMDA) | | 5-IMDA-MECH ¹⁰ | Mechanical measurements for Inverter Motor Drive Analysis (requires option 5-IMDA) | | 5-MTM | Mask and Limit testing | | 5-PAM3 | PAM3 analysis (requires options 5-DJA and 5B-WIN) | | 5-PS2 ¹¹ 12 | Power Solution Bundle (5-PWR, THDP0200, TCP0030A, 067-1686-xx deskew fixture) | | 5-PS2FRA ¹¹ 12 | Power Solution Bundle (5-PWR, THDP0200, TCP0030A, two TPP0502, 067-1686-xx deskew fixture) | | 5-PWR ¹³ | Power Measurement and Analysis | | Table continued | | ¹⁰ This option is not compatible with MSO54 $^{^{\}rm 11}$ $\,$ This option is not compatible with option 5-PWR. ¹² This option must be purchased at the same time as the instrument. Not available as an upgrade. | Instrument option | Advanced analysis | | | |-------------------|--|--|--| | 5-SV-BW-1 | Increase Spectrum View Capture Bandwidth to 500 MHz | | | | 5-SV-RFVT | Spectrum View RF vs. Time traces, triggers, Spectrograms, and IQ capture | | | | 5-UDFLT | User Defined Filter Creation Tool | | | | 5-VID | NTSC, PAL, and SECAM video triggering | | | | 5-WBG-DPT | Wide Bandgap SiC/GaN Double Pulse Test Measurements and Analysis | | | #### Add vector signal analysis SignalVu-PC is a stand-alone application that can be run on a 5 Series MSO or on a separate Windows PC to provide advanced vector signal analysis. In order to run SignalVu-PC on your 5 Series MSO, three options are required. - 1. To run the application on the instrument, the Windows SSD (5B-WIN) needs to be installed in the oscilloscope. - 2. The Spectrum View RF versus time traces option (5-SV-RFVT) needs to be installed in the oscilloscope to enable I/Q data transfer. - **3.** The Connect (CONxx-SVPC) license needs to be installed in SignalVu-PC to enable base features of the application, which includes 16+ RF measurements and displays. #### Step 8 #### Add digital probes Each FlexChannel input can be configured as eight digital channels simply by connecting a TLP058 logic probe to a FlexChannel input. You can order TLP058 probes with the instrument or separately. | For this instrument | Order | To add | |---------------------|----------------------|--------------------------| | MSO54B | 1 to 4 TLP058 Probes | 8 to 32 digital channels | | MSO56B | 1 to 6 TLP058 Probes | 8 to 48 digital channels | | MSO58B | 1 to 8 TLP058 Probes | 8 to 64 digital channels | #### Step 9 # Add analog probes and adapters Add additional recommended probes and adapters | Recommended
Probe / Adapter | Description | |--------------------------------|---| | TAP1500 | 1.5 GHz TekVPI® active single-ended voltage probe, ±8 V input voltage | | TAP2500 | 2.5 GHz TekVPI® active single-ended voltage probe, ±4 V input voltage | | TAP3500 | 3.5 GHz TekVPI® active single-ended voltage probe, ±4 V input voltage | | TAP4000 | 4 GHz TekVPI® active single-ended
voltage probe, ±4 V input voltage | | TCP0030A | 30 A AC/DC TekVPI® current probe, 120 MHz BW | | TCP0020 | 20 A AC/DC TekVPI® current probe, 50 MHz BW | | Table continued | | ¹³ This option is not compatible with option 5-PS2 or 5-PS2FRA. | Recommended
Probe / Adapter | Description | | | |--------------------------------|--|--|--| | TCP0030A | 30 A AC/DC TekVPI current probe, 120 MHz BW | | | | TCP0150 | 150 A AC/DC TekVPI® current probe, 20 MHz BW | | | | TRCP0300 | 30 MHz AC current probe, 250 mA to 300 A | | | | TRCP0600 | 30 MHz AC current probe, 500 mA to 600 A | | | | TRCP3000 | 16 MHz AC current probe, 500 mA to 3000 A | | | | TDP0500 | 500 MHz TekVPI® differential voltage probe, ±42 V differential input voltage | | | | TDP1000 | 1 GHz TekVPI® differential voltage probe, ±42 V differential input voltage | | | | TDP1500 | 1.5 GHz TekVPI® differential voltage probe, ±8.5 V differential input voltage | | | | TDP3500 | 3.5 GHz TekVPI® differential voltage probe, ±2 V differential input voltage | | | | TDP4000 | 4 GHz TekVPI® differential voltage probe, ±2 V differential input voltage | | | | THDP0100 | ±6 kV, 100 MHz TekVPI® high-voltage differential probe | | | | THDP0200 | ±1.5 kV, 200 MHz TekVPI® high-voltage differential probe | | | | TMDP0200 | ±750 V, 200 MHz TekVPI® high-voltage differential probe | | | | TPR1000 | 1 GHz, Single-Ended TekVPI® Power-Rail Probe; includes one TPR4KIT accessory kit | | | | TPR4000 | 4 GHz, Single-Ended TekVPI® Power-Rail Probe; includes one TPR4KIT accessory kit | | | | TIVP02 | Isolated Probe; 200 MHz, ±5 V to ±2500 V depending on tip; 2 meter cable | | | | TIVP02L | Isolated Probe; 200 MHz, ±5 V to ±2500 V depending on tip; 10 meter cable | | | | TIVP05 | Isolated Probe; 500 MHz, ±5 V to ±2500 V depending on tip; 2 meter cable | | | | TIVP05L | Isolated Probe; 500 MHz, ±5 V to ±2500 V depending on tip; 10 meter cable | | | | TIVP1 | Isolated Probe; 1 GHz, ±5 V to ±2500 V depending on tip; 2 meter cable | | | | TIVP1L | Isolated Probe; 1 GHz, ±5 V to ±2500 V depending on tip; 10 meter cable | | | | TPP0502 | 500 MHz, 2X TekVPI® passive voltage probe, 12.7 pF input capacitance | | | | TPP0850 | 2.5 kV, 800 MHz, 50X TekVPI® passive high-voltage probe | | | | P6015A | 20 kV, 75 MHz high-voltage passive probe | | | | TPA-BNC ¹⁴ | TekVPI® to TekProbe™ BNC adapter | | | | TEK-DPG | TekVPI deskew pulse generator signal source | | | | 067-1686-xx | Power measurement deskew and calibration fixture | | | Looking for other probes? Check out the probe selector tool at www.tek.com/probes. # Step 10 #### Add accessories Add traveling or mounting accessories | Optional Accessory | Description | | |--------------------|--------------------|--| | HC5 | Hard carrying case | | | RM5 | Rackmount kit | | | Table continued | | | $^{^{14}}$ $\,$ Recommended for connecting your existing TekProbe probes to the 5 Series MSO . | Optional Accessory | Description | |--------------------|--| | · | Order model 4865B (GPIB to Ethernet to Instrument Interface) directly from ICS Electronics | | | www.icselect.com/gpib_instrument_intfc.html | #### Step 11 Select power cord option | Power Cord Option | Description | | | |-------------------|--|--|--| | A0 | North America power plug (115 V, 60 Hz) | | | | A1 | Universal Euro power plug (220 V, 50 Hz) | | | | A2 | United Kingdom power plug (240 V, 50 Hz) | | | | A3 | Australia power plug (240 V, 50 Hz) | | | | A5 | Switzerland power plug (220 V, 50 Hz) | | | | A6 | Japan power plug (100 V, 50/60 Hz) | | | | A10 | China power plug (50 Hz) | | | | A11 | India power plug (50 Hz) | | | | A12 | Brazil power plug (60 Hz) | | | | A99 | No power cord | | | #### Step 12 Protect your investment and your uptime with a service package for your 5 Series B MSO. Optimize the lifetime value of your purchase and lower your total cost of ownership with a calibration and extended warranty plan for your 5 Series B MSO. Plans range from standard warranty extensions covering parts, labor, and 2-day shipping to Total Product Protection with repair or replacement coverage from wear and tear, accidental damage, ESD or EOS. See the table below for specific service options available on the 5 Series B MSO family of products. Compare factory service plans www.tek.com/en/services/factory-service-plans. Additionally, Tektronix is a leading accredited calibration services provider for all brands of electronic test and measurement equipment, servicing more than 140,000 models from 9,000 manufacturers. With 100+ labs worldwide, Tektronix serves as a global partner, delivering tailored whole-site calibration programs with OEM quality at a market price. View whole site calibration service capabilities www.tek.com/en/services/calibration-services. Add extended service and calibration options | Service Option | Description | | |-----------------|---|--| | Т3 | Three-year Total Product Protection, includes repair or replacement coverage from wear and tear, accidental damage, ESD or Electrical Over-stress plus standard warranty extended to 3 years. All repairs include calibration, firmware updates and 2-day shipping within country. Guarantees faster turnaround time than without coverage. | | | R3 | Standard warranty extended to 3 years. All repairs include calibration, firmware updates and 2-day shipping within country. Guarantees faster turnaround time than without coverage. | | | Table continued | - | | | Service Option | Description | | |----------------|---|--| | C3 | Calibration service for 3 years. Includes traceable calibration or functional verification where applicable, for recommended calibrations. Coverage includes the initial calibration plus 2 years of calibration coverage. | | | T5 | Five-year Total Product Protection, includes repair or replacement coverage from wear and tear, accidental damage, ESD or Electrical Overstress plus standard warranty extended to 5 years. All repairs include calibration, firmware updates and 2-day shipping within country. Guarantees faster turnaround time than without coverage. | | | R5 | Standard warranty extended to 5 years. All repairs include calibration, firmware updates and 2-day shipping within country. Guarantees faster turnaround time than without coverage. | | | C5 | Calibration service for 5 years. Includes traceable calibration or functional verification where applicable, for recommended calibrations. Coverage includes the initial calibration plus 4 years of calibration coverage. | | ## Feature upgrades after purchase Add feature upgrades in the future You can easily add functionality after the initial purchase. Node-locked licenses permanently enable optional features on a single product. Floating licenses allow license-enabled options to be easily moved between compatible instruments. Compatible instruments for the floating licenses are 5 Series MSO and 5 Series B MSO models. | Upgrade feature | Node-locked license upgrade | Floating license upgrade | Description | |--------------------------|-----------------------------|--------------------------|--| | Add instrument functions | SUP5-AFG | SUP5-AFG-FL | Add arbitrary function generator | | | SUP5-RL-125MT250M | SUP5-RL-125MT250M-FL | Extend record length from 125 Mpts to 250 Mpts | | | SUP5-RL-125MT500M | SUP5-RL-125MT500M-FL | Extend record length from 125 Mpts to 500 Mpts | | | SUP5-RL-250MT500M | SUP5-RL-250MT500M-FL | Extend record length from 250 Mpts to 500 Mpts | | Table continued | 1 | 1 | | | Upgrade feature | Node-locked license upgrade | Floating license upgrade | Description | |-----------------------|-----------------------------|--------------------------|--| | Add protocol analysis | SUP5-RFNFC | SUP5-RFNFC-FL | ISO/IEC 15693, 14443A, 14443B, and FeliCa (decode and search only) | | | SUP5-SRAERO | SUP5-SRAERO-FL | Aerospace serial triggering and analysis (MIL-STD-1553, ARINC 429) | | | SUP5-SRAUDIO | SUP5-SRAUDIO-FL | Audio serial triggering and analysis (I ² S, LJ, RJ, TDM) | | | SUP5-SRAUTO | SUP5-SRAUTO-FL | Automotive serial triggering and analysis (CAN, CAN FD, LIN, FlexRay, and CAN symbolic decoding) | | | SUP5-SRAUTOSEN | SUP5-SRAUTOSEN-FL | Automotive sensor serial triggering and analysis (SENT) | | | SUP5-SRCOMP | SUP5-SRCOMP-FL | Computer serial triggering and analysis (RS-232/422/485/UART) | | | SUP5-SRCXPI | SUP5-SRCXPI-FL | CXPI serial decoding and analysis | | | SUP5-SRDPHY | SUP5-SRDPHY-FL | MIPI D-PHY (DSI-1, CSI-2 decode and search only) | | | SUP5-SREMBD | SUP5-SREMBD-FL | Embedded serial triggering and analysis (I ² C, SPI) | | | SUP5-SRENET | SUP5-SRENET-FL | Ethernet serial triggering and analysis (10Base-T, 100Base-TX) | | | SUP5-SRESPI | SUP5-SRESPI-FL | eSPI serial decoding and analysis | | | SUP5-SRETHERCAT | SUP5-SRETHERCAT-FL | EtherCAT serial decoding and analysis | | | SUP5-SRI3C | SUP5-SRI3C-FL | MIPI I3C serial
triggering and analysis | | | SUP5-SRMDIO | SUP5-SRMDIO-FL | Management Data Input/Output serial decoding and analysis | | | SUP5-SRPM | SUP5-SRPM-FL | Power Management serial triggering and analysis (SPMI) | | | SUP5-SRPSI5 | SUP5-SRPSI5-FL PSI5 | Serial decoding and analysis | | | SUP5-SRSDLC | SUP5-SRDLC-FL | Synchronous Data Link Control Protocol (decode and search only) | | | SUP5-SRSMBUS | SUP5-SRSMBUS-FL | SMBus serial decoding and analysis | | | SUP5-SRSPACEWIRE | SUP5-SRSPACEWIRE-FL | Spacewire serial analysis | | | SUP5-SRSVID | SUP5-SRSVID-FL | Serial Voltage Identification (SVID) serial triggering and analysis | | | SUP5-SRUSB2 | SUP5-SRUSB2-FL | USB 2.0 serial bus triggering and analysis (LS, FS, and HS) | | | SUP5-SREUSB2 | SUP5-SREUSB2-FL | Embedded USB2 (eUSB2) serial decoding and analysis | Table continued... | Upgrade feature | Node-locked license upgrade | Floating license upgrade | Description | |-----------------------|-----------------------------|--------------------------|--| | Add advanced analysis | SUP5-DJA | SUP5-DJA-FL | Advanced jitter and eye analysis | | | SUP5-DPM | SUP5-DPM-FL | Digital Power Management | | | SUP5-MTM | SUP5-MTM-FL | Mask and Limit Testing | | | SUP5-DPMBAS | SUP5-DPMBAS-FL | Basic digital power management | | | SUP5-PWR | SUP5-PWR-FL | Advanced power measurements and analysis | | | SUP5-SV-BW-1 | SUP5-SV-BW-1-FL | Increase Spectrum View Capture Bandwidth to 500 MHz | | | SUP5-SV-RFVT | SUP5-SV-RFVT-FL | Spectrum View RF vs. Time traces, triggers, Spectrograms, and IQ capture | | | SUP5-UDFLT | SUP5-UDFLT-FL | User Defined Filter Creation Tool | | | SUP5-VID | SUP5-VID-FL | NTSC, PAL, and SECAM video triggering | | Add digital voltmeter | N/A | N/A | Add digital voltmeter / trigger frequency counter | | | | | (Free with product registration at www.tek.com/register4mso) | | Upgrade feature | Node-locked license upgrade | Floating license upgrade | Description | |--------------------------|-----------------------------|--------------------------|---| | Add instrument functions | SUP5-AFG | SUP5-AFG-FL | Add arbitrary function generator | | | SUP5-RL-125M | SUP5-RL-125M-FL | Extend record length from 62.5 Mpts to 125 Mpts / channel | | | SUP5-RL-250M | SUP5-RL-250M-FL | Extend record length from 62.5 Mpts to 250 Mpts / channel | | | SUP5-RL-500M | SUP5-RL-500M-FL | Extend record length from 62.5 Mpts to 500 Mpts / channel | | | SUP5-RL-125MT250M | SUP5-RL-125MT250M-FL | Extend record length from 125 Mpts to 250 Mpts / channel | | | SUP5-RL-250MT500M | SUP5-RL-250MT500M-FL | Extend record length from 250 Mpts to 500 Mpts / channel | | | SUP5-RL-125MT500M | SUP5-RL-125MT500M-FL | Extend record length from 125 Mpts to 500 Mpts / channel | | Table continued | | • | | | Upgrade feature | Node-locked license upgrade | Floating license upgrade | Description | |-----------------------|-----------------------------|--------------------------|--| | Add protocol analysis | SUP5-RFNFC | SUP5-RFNFC-FL | ISO/IEC 15693 and ISO/IEC14443A (decode and search only) | | | SUP5-SR8B10B | SUP5-SR8B10B-FL | 8b/10b serial decoding and analysis | | | SUP5-SRAERO | SUP5-SRAERO-FL | Aerospace serial triggering and analysis (MIL-STD-1553, ARINC 429) | | | SUP5-SRAUDIO | SUP5-SRAUDIO-FL | Audio serial triggering and analysis (I ² S, LJ, RJ, TDM) | | | SUP5-SRAUTO | SUP5-SRAUTO-FL | Automotive serial triggering and analysis (CAN, CAN FD, LIN, FlexRay, and CAN symbolic decoding) | | | SUP5-SRAUTOEN1 | SUP5-SRAUTOEN1-FL | 100Base-T1 Automotive Ethernet serial analysis | | | SUP5-SRAUTOSEN | SUP5-SRAUTOSEN-FL | Automotive sensor serial triggering and analysis (SENT) | | | SUP5-SRCOMP | SUP5-SRCOMP-FL | Computer serial triggering and analysis (RS-232/422/485/UART) | | | SUP5-SRCPHY | SUP5-SRCPHY-FL | MIPI C-PHY serial analysis (DSI-2, CSI-2) | | | SUP5-SRCXPI | SUP5-SRCXPI-FL | CXPI serial decoding and analysis | | | SUP5-SRDPHY | SUP5-SRDPHY-FL | MIPI D-PHY (DSI-1, CSI-2 decode and search only) | | | SUP5-SREMBD | SUP5-SREMBD-FL | Embedded serial triggering and analysis (I ² C, SPI) | | | SUP5-SRENET | SUP5-SRENET-FL | Ethernet serial triggering and analysis (10Base-T, 100Base-TX) | | | SUP5-SRESPI | SUP5-SRESPI-FL | eSPI serial decoding and analysis | | | SUP5-SRETHERCAT | SUP5-SRETHERCAT-FL | EtherCAT serial decoding and analysis | | | SUP5-SRI3C | SUP5-SRI3C-FL | MIPI I3C serial triggering and analysis | | | SUP5-SRMANCH | SUP5-SRMANCH-FL | Manchester (decode and search only) | | | SUP5-SRMDIO | SUP5-SRMDIO-FL | Management Data Input/Output serial decoding and analysis | | | SUP5-SRNRZ | SUP5-SRNRZ-FL | NRZ serial decoding and analysis | | | SUP5-SRONEWIRE | SUP5-SRONEWIRE-FL | One wire (1-Wire) serial decoding and analysis | | | SUP5-SRPM | SUP5-SRPM-FL | Power Management serial triggering and analysis (SPMI) | | | SUP5-SRPSI5 | SUP5-SRPSI5-FL | PSI5 serial decoding and analysis | | | SUP5-SRSDLC | SUP5-SRSDLC-FL | Synchronous Data Link Control Protocol Decode & Search | | | SUP5-SRSMBUS | SUP5-SRSMBUS-FL | SMBus serial decoding and analysis | | | SUP5-SRSPACEWIRE | SUP5-SRSPACEWIRE-FL | Spacewire serial decoding and analysis | | | SUP5-SRSVID | SUP5-SRSVID-FL | Serial Voltage Identification (SVID) serial triggering and analysis | | | SUP5-SRUSB2 | SUP5-SRUSB2-FL | USB 2.0 serial bus triggering and analysis (LS, FS, and HS) | | | SUP5-SREUSB2 | SUP5-SREUSB2-FL | Embedded USB2 (eUSB2) serial decoding and analysis | tek.com 69 | Upgrade feature | Node-locked license upgrade | Floating license upgrade | Description | |---|-----------------------------|--------------------------|--| | Add serial compliance testing | SUP5-AUTOEN-BND | N/A | Automotive Ethernet compliance, signal separation, PAM3 analysis (requires option 5-DJA), 100BASE-T1 serial decode | | All serial compliance products require option 5B- | SUP5-AUTOEN-SS | SUP5-AUTOEN-SS-FL | Automotive Ethernet signal separation | | WIN (SSD with Microsoft Windows 10 operating | SUP5-CMAUTOEN | SUP5-CMAUTOEN-FL | Automotive Ethernet automated compliance test solution (100BASE-T1 and 1000BASE-T1) | | system) | | | Requires ≥2 GHz bandwidth for 1000BASE-T1 testing | | | SUP5-CMAUTOEN10 | SUP5-CMAUTOEN10-FL | Automotive Ethernet (10BASE-T1S Short Reach) automated compliance test solution | | | SUP5-CMENET | SUP5-CMENET-FL | Ethernet automated compliance test solution (10BASE-T/ 100BASE-T/ 1000BASE-T). | | | | | Requires ≥1 GHz bandwidth for 1000BASE-T1 testing | | | SUP5-CMENETML | SUP5-CMENETML-FL | Multilane Ethernet automated compliance test solution | | | | | (10Base-T, 100Base-T, 1000Base-T) (requires option 5-CMENET) | | | SUP5-CMINDUEN10 | SUP5-CMINDUEN10-FL | Industrial Ethernet (10Base-T1L Long Reach) automated compliance test solution | | | SUP5-CMUSB2 | SUP5-CMUSB2-FL | USB2.0 automated compliance test solution. | | | | | Requires TDSUSBF USB test fixture | | | | | Requires ≥2 GHz bandwidth for high-speed USB testing | | Table continued | 1 | 1 | | | lable continued... | Upgrade feature | Node-locked license upgrade | Floating license upgrade | Description | |-----------------------|------------------------------|---------------------------------|--| | Add advanced analysis | SUP5-DBLVDS | SUP5-DBLVDS-FL | LVDS debug and analysis (requires option 5-DJA and 5B-WIN) | | | SUP5-DJA | SUP5-DJA-FL | Advanced jitter and eye analysis | | | SUP5-DPM | SUP5-DPM-FL | Digital Power Management | | | SUP5-IMDA ¹⁵ | SUP5-IMDA-FL ¹⁵ | Inverter Motor Drive Analysis | | | SUP5-IMDA-DQ0 ¹⁵ | SUP5-IMDA-DQ0-FL ¹⁵ | DQ0 feature for Inverter Motor Drive Analysis (requires option 5-IMDA) | | | SUP5-IMDA-MECH ¹⁵ | SUP5-IMDA-MECH-FL ¹⁵ | Mechanical measurements for Inverter Motor Drive Analysis (requires option 5-IMDA) | | | SUP5-MTM | SUP5-MTM-FL | Mask and Limit Testing | | | SUP5-PAM3 | SUP5-PAM3-FL | PAM3 analysis (requires option 5-DJA) | | | SUP5-PWR | SUP5-PWR-FL | Advanced power measurements and analysis | | | SUP5-PS2 | N/A | Power solution bundle (5-PWR, THDP0200, TCP0030A, 067-1686-XX deskew fixture) | | | SUP5-DPMBAS | SUP5-DPMBAS-FL | Basic Digital Power Management | | | SUP5-SV-BW-1 | SUP5-SV-BW-1-FL | Increase Spectrum View Capture Bandwidth to 500 MHz | | | SUP5-SV-RFVT | SUP5-SV-RFVT-FL | Spectrum View RF vs. Time traces, triggers,
Spectrograms, and IQ capture | | | SUP5-UDFLT | SUP5-UDFLT-FL | User Defined Filter Creation Tool | | | SUP5-VID | SUP5-VID-FL | NTSC, PAL, and SECAM video triggering | | | SUP5-WBG-DPT | SUP5-WBG-DPT-FL | Wide Bandgap SiC/GaN Double Pulse Test
Measurements and Analysis | | Add digital voltmeter | N/A | N/A | Add digital voltmeter / trigger frequency counter | | | | | (Free with product registration at www.tek.com/register5mso) | | Upgrade feature | Upgrade | Description | |---|-----------|--| | Add expansion embedded Windows operating system SSD | SUP5B-WIN | Add removable SSD with Windows 10 operating system | | Add expansion embedded operating system SSD | SUP5B-LNX | Add removable SSD with embedded operating system | ¹⁵ This option is not compatible with MSO54B. ### Bandwidth upgrades after purchase future Add bandwidth upgrades in the You can easily upgrade the analog bandwidth of products after initial purchase. Bandwidth upgrades are purchased based on the number of FlexChannel inputs, the current bandwidth, and the desired bandwidth. Upgrades up to 1 GHz
bandwidth can be performed in the field by installing a software license and a new front panel label. Upgrades to 2 GHz require installation and calibration at a Tektronix authorized service center. > Bandwidth upgrades from 350 MHz or 500 MHz to 1 GHz or 2 GHz also include one TPP1000 1 GHz passive probe per instrument channel. | Oscilloscope model owned | Bandwidth upgrade product | Upgrade option | Upgrade option description | |--------------------------|---------------------------|----------------|--| | MSO54B | SUP5B-BW4 | 5B-BW3T5-4 | License; Bandwidth Upgrade for 5 Series B MSO;
Upgrade from 350 MHz to 500 MHz bandwidth on a (4)
FlexChannel model; Node Locked | | | SUP5B-BW4 | 5B-BW3T10-4 | License; Bandwidth Upgrade for 5 Series B MSO;
Upgrade from 350 MHz to 1 GHz bandwidth on a (4)
FlexChannel model; Node Locked | | | SUP5B-BW4 | 5B-BW5T10-4 | License; Bandwidth Upgrade for 5 Series B MSO;
Upgrade from 500 MHz to 1 GHz bandwidth on a (4)
FlexChannel model; Node Locked | | | SUP5B-BW10T204 | | Bandwidth upgrade; from 1 GHz to 2 GHz on (4) FlexChannel models of 5 Series B oscilloscopes | | | SUP5B-BW3T204 | | Bandwidth upgrade; from 350 MHz to 2 GHz on (4) FlexChannel models of 5 Series B oscilloscopes | | | SUP5B-BW5T204 | | Bandwidth upgrade; from 500 MHz to 2 GHz on (4) FlexChannel models of 5 Series B oscilloscopes | | SUP5B-BW3T20 | SUP5B-BW6 | 5B-BW3T5-6 | License; Bandwidth Upgrade for 5 Series B MSO;
Upgrade from 350 MHz to 500 MHz bandwidth on a (6)
FlexChannel model; Node Locked | | | SUP5-BW6 | 5B-BW3T10-6 | License; Bandwidth Upgrade for 5 Series B MSO;
Upgrade from 350 MHz to 1 GHz bandwidth on a (6)
FlexChannel model; Node Locked | | | SUP5B-BW6 | 5B-BW5T10-6 | License; Bandwidth Upgrade for 5 Series B MSO;
Upgrade from 500 MHz to 1 GHz bandwidth on a (6)
FlexChannel model; Node Locked | | | SUP5B-BW10T206 | | Bandwidth upgrade; from 1 GHz to 2 GHz on (6) FlexChannel models of 5 Series B oscilloscopes | | | SUP5B-BW3T206 | | Bandwidth upgrade; from 350 MHz to 2 GHz on (6) FlexChannel models of 5 Series B oscilloscopes | | | SUP5B-BW5T206 | | Bandwidth upgrade; from 500 MHz to 2 GHz on (6) FlexChannel models of 5 Series B oscilloscopes | | Oscilloscope model owned | Bandwidth upgrade product | Upgrade option | Upgrade option description | |--------------------------|---------------------------|----------------|--| | MSO58B | SUP5B-BW8 | 5B-BW3T5-8 | License; Bandwidth Upgrade for 5 Series B MSO;
Upgrade from 350 MHz to 500 MHz bandwidth on a (8)
FlexChannel model; Node Locked | | | SUP5B-BW8 | 5B-BW3T10-8 | License; Bandwidth Upgrade for 5 Series B MSO;
Upgrade from 350 MHz to 1 GHz bandwidth on a (8)
FlexChannel model; Node Locked | | | SUP5B-BW8 | 5B-BW5T10-8 | License; Bandwidth Upgrade for 5 Series B MSO;
Upgrade from 500 MHz to 1 GHz bandwidth on a (8)
FlexChannel model; Node Locked | | | SUP5B-BW10T208 | | Bandwidth upgrade; from 1 GHz to 2 GHz on (8) FlexChannel models of 5 Series B oscilloscopes | | | SUP5B-BW3T208 | | Bandwidth upgrade; from 350 MHz to 2 GHz on (8) FlexChannel models of 5 Series B oscilloscopes | | | SUP5B-BW5T208 | | Bandwidth upgrade; from 500 MHz to 2 GHz on (8) FlexChannel models of 5 Series B oscilloscopes | Tektronix is ISO 14001:2015 and ISO 9001:2015 certified by DEKRA. ASEAN / Australasia (65) 6356 3900 Belgium 00800 2255 4835" Central East Europe and the Baltics +41 52 675 3777 Finland +41 52 675 3777 Hong Kong 400 820 5835 Japan 81 (120) 441 046 Middle East, Asia, and North Africa +41 52 675 3777 People's Republic of China 400 820 5835 Republic of Korea +82 2 565 1455 Spain 00800 2255 4835" Taiwan 886 (2) 2656 6688 Austria 00800 2255 4835* Brazil +55 (11) 3759 7627 Central Europe & Greece +41 52 675 3777 France 00800 2255 4835* India 000 800 650 1835 Luxembourg +41 52 675 3777 The Netherlands 00800 2255 4835* Poland +41 52 675 3777 Russia & CIS +7 (495) 6647564 Sweden 00800 2255 4835* United Kingdom & Ireland 00800 2255 4835* Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Canada 1 800 83 9200 Denmark +45 80 88 1401 Germany 00800 2255 4835* Italy 00800 2255 4835* Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90 Norway 800 16098 Portugal 80 08 12370 South Africa +41 52 675 3777 Switzerland 00800 2255 4835* USA 1 800 833 9200 For Further Information. Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tek.com. Copyright © Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies. ^{*} European toll-free number. If not accessible, call: +41 52 675 3777