COOPERATION AGREEMENT

This Cooperation Agreement (the "Agreement") for the purpose of "TM05000031 – Targeting the Androgen Receptor: Developing Binder Molecules for Prostate Cancer Therapy and Advancing NMR-AI Platform for Enhanced Drug Design" is made as of 13 July, 2023 (the "Agreement Date"), by and between the Contractual Parties including Project Leader, Project Partner and Project Participants (collectively as "All Contractual Parties" and each, an "Contractual Party"):

Project Leader

Name:

AI|ffinity s.r.o.

Id. No.: Registered seat: JIC INMEC, Purkyňova 127, 612 00 Brno-Medlánky, Czech Republic Represented by: Thomas Evangelidis, M.Res., M.Phil., Ph.D., CEO & CSO (the "**Receiver**"); and,

Project Partner

Name:AnHorn Medicines Co., Ltd.Id. No.:83523270Registered seat: 5F, No. 99, Ln. 130, Sec. 1, Academia Rd., Nangang Dist., Taipei 115, Taiwan(R.O.C.)Represented by:Chu-Chiang Lin, Founder & CEO(the "Partner"); and,

Project Participants

Name:NexMR GmbHId. No.:CHE-461.095.635Registered seat:IFJ Institut für Jungunternehmen AG, Wiesenstrasse 10A, 8952 Schlieren,Switzerland(the "NexMR"); and,

Name:Masaryk University, Central European Institute of TechnologyId. No.:CZ00216224Registered seat:Žerotínovo nám. 9, 601 77 Brno, Czech Republic(the "CEITEC MU")

(the "Participants")

Preamble

All Contractual Parties cooperate in the implementation of Project No. TM05000031 entitled

"TM05000031 - Targeting the Androgen Receptor: Developing Binder Molecules for Prostate Cancer Therapy and Advancing NMR-AI Platform for Enhanced Drug Design" (the "Project"), which the Receiver submitted to the 5th public tender of the DELTA 2 support programme for applied research, experimental development, and innovation (the "Programme") of the Technology Agency of the Czech Republic (the "Provider").

Provided that the Provider enters into the Agreement on Granting of Subsidy to the Project with the Receiver (the "Agreement on Granting of Subsidy"), All Contractual Parties undertake herein to cooperate in Project implementation and in utilizing the results of the Project.

Article I

Subject Matter of Agreement

1.1 The subject matter of this Agreement is to describe the roles and rights and obligations of All Contractual Parties relating to the implementation of the Project, in particular to define the rights and duties of All Contractual Parties with respect to (i) rights to intangible property (e.g. intellectual property) necessary for the implementation of the Project, (ii) rights to intangible property created during or in relation to the Project and (iii) regulation of utilizing the results of the Project.

1.2 The nature, purpose, goals and expected results of the Project are specified (i) in the Project proposal registered with the information/application system of the Provider and (ii) in the responsible assignments which form <u>Annex 1</u> hereof.

Article II

Terms and Conditions of Cooperation apply to All Contractual Parties

2.1 All Contractual Parties shall cooperate in compliance with the proposed Project and other conditions and documents that are binding for the Project. All Contractual Parties become acquainted with the Project content before signing this Agreement, including the Project application and all Programme conditions.

2.2 All Contractual Parties undertake to use all necessary efforts in order to achieve the purpose, goals and expected results of the Project as defined in Annex 1 to this Agreement. Failure to accomplish the purpose, goals and/or expected results of the Project may only be justified by circumstances generally recognized and defined as *force majeure*.

2.3 All Contractual Parties undertake to act and perform in a manner that will not jeopardize the implementation of the Project and the interests of the Participants and the Investigators (as defined in Article III below).

Article III

Structure of the Project – Participants and the Investigators (collectively as "All Investigators")

3.1 The person responsible for the scientific implementation of the Project by the **Receiver** is the principal investigator: xxxxxxxxx, email: xxxxxxxxxx

telephone: +xxxxxxxxx, address: JIxxxxxxxxx

3.3 The person responsible for the scientific implementation of the Project by **NexMR** is the responsible investigator: xxxxxxxxxxxx

3.4 The person responsible for the scientific implementation of the Project by the **CEITEC MU** is

the responsible investigator: xxxxxxxxxxxxxxxxxxxxxxxxxx

3.5 The investigators are involved in the activities necessary for the successful completion of the Project in compliance with the approved Project proposal.

Article IV

Project Management, Involvement of Respective Contractual Party in Project

4.1 The Receiver is the Project submitter and applicant for the provision of subsidy in the Czech Republic. The Receiver shall conclude an Agreement on Granting of Subsidy with the Provider. The Receiver is the coordinator of the Project and provides administrative cooperation with the Provider in the Czech Republic.

4.2 The Partner is an applicant for the provision of subsidy in the country of its origin under the terms and conditions applicable in the country where the subsidy is granted.

4.3 The Partner undertakes to exercise all necessary efforts to implement the Project, and to act in a manner that will not jeopardize the implementation of the Project, the Project goals and results and the interests of the Receiver and the Participants. The Receiver undertakes to exercise all necessary efforts to implement the Project, and to act in a manner that will not jeopardize the implementation of the Project, the Project goals and results and the interests of the Partner and the Participants.

4.4 All Contractual Parties and All Investigators undertake to perform within the set deadlines and defined extent the activities leading to the Project implementation as specifically determined in the Project proposal and/or any other activities as necessary or needed for proper Project implementation.

Article V

Course and Evaluation of Project

5.1 For the purposes of verification and evaluation of progress in the Partner's cooperation during the Project implementation, All Contractual Parties are obligated to provide any and all relevant progress information and documents during the monthly meeting; and each party is responsible to prepare reports for their country.

5.2 All Contractual Parties undertake to cooperate on the execution of implementation plan to the Project results.

Article VI

Rights and Duties to All Contractual Parties

6.1 All Contractual Parties are obligated to notify each other any and all changes concerning the Project, any inability to perform obligations under this Agreement duly and in a timely manner and any and all material changes and facts that could affect the implementation, expected results and goals of the Project no later than seven (7) calendar days from the day on which they become aware thereof. All Contractual Parties are further obligated to prove at any time that they remain qualified to participate in the Project implementation.

6.2 All Contractual Parties undertake to archive documents relating to the Project for at least ten (10) years from the completion of the Project.

Article VII

Intellectual Property, Tangible Property

7.1 This Agreement governs the rights and obligations of All Contractual Parties to the existing intellectual property prior to entering into this Agreement (the "**Pre-Existing Knowledge**") and sets forth the rules of utilization of such Pre-Existing Knowledge for the purposes of implementation of the Project. Further, the Agreement governs the rights and obligations of All Contractual Parties to intellectual property created during the term hereof.

7.2 Intellectual property for the purposes of this Agreement means any results of intellectual activity, based on which any objectively perceivable intangible property is created. In particular, this includes inventions, technical solutions protected as a utility model, industrial designs, innovations and rationalization proposals, biotechnological inventions, trademarks, copyrighted works, know-how and other results of an intellectual activity.

7.3 Pre-Existing Knowledge which is necessary for the implementation of the Project or the utilization of its results shall remain the property of respective Contractual Party, however such Contractual Party shall permit the other Contractual Party to use any of its Pre-Existing Knowledge to the extent as necessary for the purposes of implementation of the Project.

7.4 All Contractual Parties acknowledged a separate license agreement between the AI|ffinity and CEITEC MU, file n. 005-2022-Bur as amended on June 15, 2023, including right to option and back-license to CEITEC MU for the use of derivative works (the "**Separate License Agreement**"), shall not affect the Partner's freedom to use the Intellectual Property and Tangible Property created during the term of this agreement, and such usage shall be granted free of charge.

7.5 In the event of any inconsistency between this Agreement and the Separate License Agreement or any license agreements between each Contractual Party that were not fully disclosed to the Partner before the effective Agreement Date, this Agreement shall prevail.

7.6 All Contractual Parties agreed that the intellectual property rights of the Partner's AIMCADD platform and its technology, all the data generated by this platform, and all resulting hits, lead compounds, and related chemical structures generated from the Project are exclusively owned by the Partner. Furthermore, the Partner holds complete ownership over all experimental data generated during their research activities.

7.7 All Contractual Parties agreed that the intellectual property rights of AI|ffinity's upgraded NMR-AI software platform, all in silico data generated by this platform are the exclusive property of AI|ffinity. This includes all outsourced DNA vectors derived from the AR-V7 sequence, protein expression, and purification protocols and HDX-MS data. Moreover the processed NMR spectra (including chemical shift assignments) and all related structural data, processed X-ray and SAXS structural data generated at CEITEC CF, the 3D structures and MD trajectories of protein and protein-ligand complexes created by AI|ffinity in this project are unequivocally owned by AI|ffinity. This data can be utilized for the purpose of improving AI|ffinity's technology, but not for development and commercialization related to any Androgen Receptor applications unless the Receiver receives written approval from the Partner. AI|ffinity's use of 4D-GRAPHS software and any derivatives will be available to CEITEC MU free of charge for noncommercial applications subject to the license agreement above.

7.8 All Contractual Parties agreed that NexMR is the sole owner of the intellectual property rights associated with its photo-CIDNP spectra collection, photo-CIDNP compatible fragment library, experimental methodologies, hit discovery and characterization methods, as well as any methodological development by a NexMR employee. In addition, NexMR shall have the sole ownership and rights to use all experimental data, including binding data, affinity data, and epitope restraints, derived from photo-CIDNP NMR experiments in this Project. This data can be utilized for the purpose of improving NexMR's technology and may be disclosed for this purpose, but not for commercialization.

7.9 All Contractual Parties agreed that the intellectual property rights of all raw data produced by measurements conducted at CEITEC CF, are solely owned by CEITEC MU. This data includes, but is not limited to, unprocessed NMR spectra, MST data, X-ray crystallography data, SAXS data, circular dichroism data, analytical size-exclusion chromatography (SEC) data, and any other biophysical measurements made at CEITEC CF. However, the ownership over all data and research outcomes generated from the processing of these raw data by AI|ffinity (characterization of protein-ligand interaction, Kd values, molecular shapes by SAXS, molecular weights by SEC, 3D structures), will belong to AI|ffinity, but not for development and commercialization related to any

Androgen Receptor applications unless the Receiver receives written approval from the Partner. CEITEC MU, receives compensation from the collaborating undertaking equivalent to market prices for the out-sourced services to the results assigned by the Project Leader of the Project. The arising activities and assigned to or accessed by the Project Leader undertaking after the conclusion of Project, predominantly the raw data produced shall be governed by the Separate License Agreement and without effect to the right of the Partner.

7.10 All Contractual Parties agreed that the Partner has unrestricted freedom to obtain and apply for internal R&D purposes all types of NMR and X-ray structural data of protein, protein-ligand, and related structural data derived from the Project.

7.11 All Contractual Parties agreed that the Partner has unrestricted freedom to submit patent applications in protection of the related chemical structures derived from the Project into the disease indications, including but not limited to, prostate cancer, breast cancer, liver cancer, lung cancer, bladder cancer, kidney cancer.

7.12 All Contractual Parties agreed that AI|ffinity and NexMR won't be listed as co-inventors and/or applicants on the patents for the therapeutic molecules. However, they will be the lead authors on any non-commercial scientific papers that get published. All Contractual Parties agree to provide appropriate acknowledgment of CEITEC MU as the source of the relevant data or relevant intellectual property in relevant publications and acknowledge CEITEC MU contributors as authors where appropriate.

7.13 All Contractual Parties agreed that the Intellectual property for which the protection is possible (patents, utility models etc.) cannot be disclosed until the respective applications for protection are submitted.

7.14 All Contractual Parties agreed to collaboratively choose suitable research findings, to be submitted for joint publication in a journal, after the patent application is submitted.

Article VIII

Ensuring Protection of Information and Outcomes Obtained in Connection with the Project

8.1 All Contractual Parties undertake to provide each other with all information as necessary to carry out the activities hereunder. Unless All Contractual Parties agree otherwise any and all information obtained from the other Contractual Party, which is not in the public domain is considered to be confidential (the "Confidential Information").

8.2 Any of the respective Contractual Party that has obtained such Confidential Information is obligated to maintain confidentiality thereof and ensure sufficient protection against unauthorized access thereto. It must not disclose such Confidential Information to any other person/entity, save for its employees and other persons who are in charge of conducting activities under this Agreement and with whom the respective Contractual Party has concluded a confidentiality agreement with a scope similar to that stipulated for All Contractual Parties by this Agreement, and it shall not use the Confidential Information for any purpose other than the performance of activities under this Agreement.

8.3 Duties pursuant to para 8.1 apply without any change and remain valid for a period of ten (10) years after the termination of this Agreement, notwithstanding the reason for such termination.

Article IX

Liability for Damage

9.1 All Contractual Parties acknowledge that a breach of a duty under this Agreement by any of the Contractual Party may result in the other Contractual Party incurring damage, and undertake to compensate the other Contractual Party for any damage so caused.

Article X

Final Provisions

10.1 This Agreement becomes valid on the date of its signature by All Contractual Parties and the rights and obligations to the **Article VII Intellectual Property**, **Tangible Property** shall be effective as of the signature date of the Agreement on granting of Subsidy. The Agreement is concluded for the duration of the Project and for three (3) years after the completion of the Project. All Contractual Parties have agreed that those provisions of the Agreement which were apparently intended by All Contractual Parties to survive after the termination or expiry of the Agreement shall remain valid and effective (in particular Articles 7.1 - 7.9 and Articles 8.1 - 8.3).

10.2 All Contractual Parties have agreed to settle any disputes arising out of the implementation of the Agreement by mutual agreement. Should such amicable settlement prove to be impossible within a reasonable amount of time, Any controversy or claim arising out of or relating to this Agreement or the breach thereof, shall be settled by arbitration administered by the Singapore International Arbitration Centre ("SIAC") in accordance with the Arbitration Rules of the Singapore International Arbitration Centre for the time being in force, which rules are deemed to be incorporated by reference in this Section. The seat of the arbitration shall be Singapore. The Tribunal shall consist of one (1) arbitrator to be appointed by the President for the time being of the SIAC. The language of the arbitration shall be English. The language to be used in the proceedings shall be in English.

10.3 The Agreement may cease to exist upon full discharge of all obligations by All Contractual Parties arising hereunder, and/or by a written agreement of All Contractual Parties in which the Receiver and the Partner agree upon the terms and conditions of the termination of the Agreement.

10.4 This Agreement shall be governed by and construed and enforced in accordance with the laws of Singapore. The terms and conditions of subsidy granted to each Contractual Party by its country of origin shall be governed by valid laws and regulations of the country granting such subsidy.

10.5 Changes and amendments to the Agreement may be made solely by agreement of All Contractual Parties in the form of written numbered amendments to the Agreement. The Partner is not entitled to transfer rights and duties hereunder to a third party without the prior written agreement of the Receiver during the Agreement on Granting of Subsidy.

10.6 This Agreement may be terminated under the following circumstances: (i) Any Contractual Party may terminate this Agreement if, upon receipt of written notice from the non-breaching party, the breaching party fails to rectify its breach of this Agreement within a reasonable period of time specified in the notice; or (ii) either the Receiver or the Partner may terminate this Agreement if the application for Granting of Subsidy is rejected.

10.7 An electronic copy, telecopy or other reproduction of this Agreement may be executed by one or more parties hereto and delivered by such party by e-mail or any similar electronic transmission device pursuant to which the signature of or on behalf of such party can be seen. Such execution and delivery shall be considered valid, binding and effective for all purposes. At the request of any party hereto, all parties hereto agree to execute and deliver an original of this Agreement as well as any electronic copy, telecopy or other reproduction hereof.

10.8 All Contractual Parties hereby declare that they have read through the whole Agreement, agree with the context and further represent that this Agreement has been concluded in full compliance with their internal policies and that they are fully aware of the obligations they assume by concluding this Agreement.

(signature page follows)

XXXXXXXXXXXXXXXXXXXXXXXX

Name	Task Group	Task & Assignment	Key Milestones	Description			
Recept	Receptor design, synthesis & structure determination [weight: 15%]						
Receptor design, synthesis & structure determinatio n Executing	engineering	Creation of protein expression constructs of C-terminus AI ffinity (subcontracting)	Clone several sequences from the C-term (up to 171 aa), including the DNA-binding domain.	Design of 5 DNA constructs with different boundaries and different affinity tags using standard gene synthesis / molecular cloning methods. Expression tests in LB medium - determination of the optimal conditions for each protein variant in soluble form.			
company : AI ffinity & CEITEC MU (weight: 100 %)		Optimization of expression/purification protocols AI ffinity (subcontracting)	Express in E. coli, establish a high-yield expression/purification protocol . Select the longest possible, hereafter referred as AR-V7-Cterm.	Production of the 3 best constructs (1L in LB medium). 1. Purification on the soluble part by affinity chromatography (according to the tag), tag removal by TEV cleavage, reverse affinity chromatography and gel filtration. 2. Standard Quality Control: SDS-PAGE, maximal solubility concentration, storage conditions. 3. Technical report with SDS Page gels and chromatograms.			
	determination	Apo structure shape determination by SAXS AI ffinity & CEITEC MU	-	 Data collection: protein sample is exposed to an X-ray beam, and scattering patterns are recorded over a range of scattering angles. The intensity of scattered X-rays is measured as a function of the scattering angle. Data processing: background subtraction and normalization. Data analysis and interpretation. Result: general shape of AR-V7-Cterm apo form. 			
		Apo secondary structure analysis by Circular Dichroism Al ffinity & CEITEC MU	Estimate the secondary structure (SS) element content (alpha-helices, beta-sheets, and random coils) in the AR-V7-Cterm apo form.	The primary data collected in a CD experiment is the differential absorbance or CD signal, typically represented as the molar ellipticity (θ). Experimental steps: 1. Data Collection: Collect the			

Annex 1 – Responsible Assignments and Key Milestones of the Project

	I		
			CD spectrum of protein sample by scanning a range of
			wavelengths (typically in the UV
			or visible range) while
			measuring the differential
			absorbance.
			2. Data Analysis: Analyze the
			collected CD spectra - apply
			mathematical algorithms and/ or compare the experimental
			data to reference datasets or
			known spectral features.
			3. Interpretation
			Outcome: qualitative and
			quantitative information about
			the secondary structure content
			and folding behavior of the
_			AR-V7-Cterm apo form.
	Production of	Feasibility study to	All the NMR tasks
	isotopically label	-	throughout the project will
	protein for all NN		rely on labeled samples of
	experiments	efficiency of the	AR-V7-Ctem. As the
	Al ffinity	labeling process,	expression of labeled
		ensuring the	proteins may significantly
		optimum use of resources and	decrease the yield, a
		accurate results.	feasibility study of such production will have to take
		Subsequently	place before production. If
		productions of	production is attainable, two
		AR-V7-Cterm protein	highly pure and
		labeled with 15N,	concentrated samples of the
		13C or 2D,	AR-V7-Ctem (~0.3 mM), one
		depending on the	labeled with ^15N, ^13C and
		NMR experiment.	^2D and the other with just
			^15N and ^13C for NMR
			signal enhancement, will be
			produced for 4D NMR
			structure determination.
			Simultaneously a larger
			quantity of ^15N labeled
			sampled will be produced for
			all 2D NMR experiments for
			compound binding
			validation, mapping of
			interactions with the protein
			and estimation of Kd.
	Structure	Determine the	The primary data collected in
	determination by 4D-NMR or X-ray	structure of the AR-V7-Cterm apo form.	4D-NMR experiments are NMR spectra, containing information
	Al ffinity & CEITEC		on resonance frequencies,
			intensities, and connectivity
			patterns of the nuclei in the
			biomolecule. The analysis of these spectra can provide

		detailed structural information,
		including the coordinates of
		atoms, bond lengths, dihedral
		angles, and other structural
		parameters of the biomolecule.
		Moreover, the technique
		enables the determination of
		the spatial arrangement of
		atoms and the folding of the
		molecule in solution, providing
		insights into its function and
		interactions with other
		molecules.
		Sample Preparation
		(outsourced): check
		"Production of isotopically
		labeled protein for NMR
		experiments" task.
		•
		1. Data Collection: Collect NMR
		spectra by measuring the
		resonance frequencies and
		intensities of the nuclei in the
		sample. From the first sample
		the NH(CO)CACB spectrum will
		be recorded, while from the
		second sample the 4D HCNH
		NOESY spectrum. The four
		dimensions in the last spectrum
		refer to the four frequency
		domains recorded, typically
		proton (1H), carbon (13C),
		amide nitrogen (15N), and
		amide hydrogen (1H) nuclei.
		2. Data Analysis: Fourier
		transformation, phasing, and
		baseline correction to obtain
		frequency and intensity
		information. Resonance
		assignment to peaks will be
		conducted automatically using
		AI ffinity's 4D-GRAPHS
		algorithm.
		3. Structure Calculation: Use
		specialized software and
		algorithms to calculate the
		three-dimensional structure of
		the biomolecule from the
		assigned 4D NOESY spectrum.
		Outcome: 3D conformational
		ensemble of the AR-V7-Cterm
		apo form in solution.
		If 4D NMR structure
		determination fails, then we
		shall pursue X-ray
		crystallography.
		Type of Data Collected: The
-	-	

				primary data collected in X-ray crystallography is the set of X-ray diffraction images, which contain the intensities and positions of the diffracted X-ray spots. 1. Sample Preparation: crystallizing of the protein sample under controlled conditions 2. Data Collection: expose the crystal to an intense and collimated X-ray beam. Rotate the crystal to different orientations and collect a series of X-ray diffraction images. 3. Data Analysis: Process the collected X-ray diffraction images to obtain the intensities and positions of the diffracted X-ray spots. This involves indexing the diffraction pattern to determine the unit cell parameters and applying corrections for various factors such as background noise and detector distortions. 4. Structure Solution: Use specialized software and algorithms to determine the phases of the diffracted X-ray waves. Outcome: detailed atomic-level information about the three-dimensional arrangement of atoms within the crystal lattice: positions, bond lengths, bond angles, and other structural parameters of the atoms in the material. From those, the average 3D structure of the AR-V7-Cterm in the		
Crystal lattice will be derived. Development of binder molecules for AR & AR-V7 [weight: 70%]						
	In silico-based screening	Preparation of AR-V7 DBD structure AnHorn Medicines	Establish 1 ligand binding pocket from the AR DBD structure that can be used for ligand screening	To predict the binding conformation of compounds to AR-V7 DBD, it is necessary to obtain the 3D structure of the protein. The researchers at AnHorn Medicines have downloaded the relevant structure of AR DBD from		
Medicines (weight: 50 %)				the RCSB Protein Data Bank		

(weight: **50** %)

	1	Τ		
Al ffinity & NexMR (weight: 50 %)				in the United States (https://www.rcsb.org/). The corresponding PDB code is 1R4I.
		Preparation of ligand database AnHorn Medicines	Prepare 1 compound database and complete the preprocessing	To predict the binding conformation of compounds to AR-V7 DBD, another essential requirement is to prepare a virtual drug molecule database. In this study, the researchers plan to use the ZINC15 virtual drug molecule database (https://zinc15.docking.org/)
		Virtual screening AnHorn Medicines	Select 20-30 potential small molecules based on the screening results	AR DBD contains two zinc finger domains: the P-box, which spans from residue 577 to 581, and the D-box, which spans from residue 596 to 600. According to a published study by Huifang et al. in 2014, the main ligand binding pocket of AR DBD is located in the P-box. We have selected the P-box as the ligand binding pocket and will perform virtual screening using the AIMCADD Drug Development Platform.
	NMR-AI screening	1D NMR screening (Photo-CIDNP) NexMR	Screen 500 diverse fragments (in-house library) complemented by 50 (ordered) diverse compounds selected in collaboration with AI ffinity.	Photo-CIDNP fragment screening is a novel method that utilizes nuclear magnetic resonance (NMR) for studying ligand-target interactions, overcoming traditional NMR limitations such as low sensitivity and long acquisition times. This method employs a technique known as photochemically induced dynamic nuclear polarization (photo-CIDNP), which hyperpolarizes the sample in an aqueous solution at room temperature by merely shining light on it. It facilitates the identification of hyperpolarizable small molecules, the creation of a

library compatible with
photo-CIDNP, and
semi-quantitative
assessment of ligand binding
to a protein using
photo-CIDNP quenching.
This approach increases the
throughput, reduces sample
concentration, and allows for
the detection of
ligand-protein interactions
using photo-CIDNP.
Photo-CIDNP increases
signal-to-noise ratio and
enables the identification of
binding through polarization
quenching, even at low
micromolar concentrations.
The process leverages
single-scan NMR
experiments that last only 2
to 5 seconds and a
high-throughput screening
rate of 1500 samples per
day, thanks to an automated
flow-through platform. The
availability of a photo-CIDNP
fragment library further
facilitates comprehensive
fragment-based screening,
accelerating ligand-target
interaction screening in drug
discovery.
The photo-CIDNP NMR
screening process involves
several steps:
1. Identification of
Hyperpolarizable Molecules:
This initial step focuses on
finding small molecules that
can be hyperpolarized using
photo-CIDNP, i.e., their
nuclear spin states can be
altered upon exposure to
light, leading to an
enhancement of the NMR
signal.
2. Creation of a Compatible
Library: The identified
hyperpolarizable molecules
are used to form a library
that is compatible with the

utilize 1D NMR levera	 photo-CIDNP method. 3. Induction of Hyperpolarization: The selected small-molecule library is exposed to light, inducing hyperpolarization and enhancing the sensitivity of the NMR measurement. 4. Assessment of Ligand-Protein Binding: The hyperpolarized sample is then subjected to NMR, and the degree of photo-CIDNP quenching is assessed. This quenching is a result of ligand-protein interactions, allowing for the semi-quantitative evaluation of ligand binding to the target protein. 5. Screening of Fragments: The fragments in the library are screened against the target protein, typically
deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo Al ffinity & NexMR impro	 Hyperpolarization: The selected small-molecule library is exposed to light, inducing hyperpolarization and enhancing the sensitivity of the NMR measurement. 4. Assessment of Ligand-Protein Binding: The hyperpolarized sample is then subjected to NMR, and the degree of photo-CIDNP quenching is assessed. This quenching is a result of ligand-protein interactions, allowing for the semi-quantitative evaluation of ligand binding to the target protein. 5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo Al ffinity & NexMR impro	selected small-molecule library is exposed to light, inducing hyperpolarization and enhancing the sensitivity of the NMR measurement. 4. Assessment of Ligand-Protein Binding: The hyperpolarized sample is then subjected to NMR, and the degree of photo-CIDNP quenching is assessed. This quenching is a result of ligand-protein interactions, allowing for the semi-quantitative evaluation of ligand binding to the target protein. 5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo Al ffinity & NexMR impro	library is exposed to light, inducing hyperpolarization and enhancing the sensitivity of the NMR measurement. 4. Assessment of Ligand-Protein Binding: The hyperpolarized sample is then subjected to NMR, and the degree of photo-CIDNP quenching is assessed. This quenching is a result of ligand-protein interactions, allowing for the semi-quantitative evaluation of ligand binding to the target protein. 5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	inducing hyperpolarization and enhancing the sensitivity of the NMR measurement. 4. Assessment of Ligand-Protein Binding: The hyperpolarized sample is then subjected to NMR, and the degree of photo-CIDNP quenching is assessed. This quenching is a result of ligand-protein interactions, allowing for the semi-quantitative evaluation of ligand binding to the target protein. 5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	and enhancing the sensitivity of the NMR measurement. 4. Assessment of Ligand-Protein Binding: The hyperpolarized sample is then subjected to NMR, and the degree of photo-CIDNP quenching is assessed. This quenching is a result of ligand-protein interactions, allowing for the semi-quantitative evaluation of ligand binding to the target protein. 5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	of the NMR measurement. 4. Assessment of Ligand-Protein Binding: The hyperpolarized sample is then subjected to NMR, and the degree of photo-CIDNP quenching is assessed. This quenching is a result of ligand-protein interactions, allowing for the semi-quantitative evaluation of ligand binding to the target protein. 5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	 4. Assessment of Ligand-Protein Binding: The hyperpolarized sample is then subjected to NMR, and the degree of photo-CIDNP quenching is assessed. This quenching is a result of ligand-protein interactions, allowing for the semi-quantitative evaluation of ligand binding to the target protein. 5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo Al ffinity & NexMR impro	Ligand-Protein Binding: The hyperpolarized sample is then subjected to NMR, and the degree of photo-CIDNP quenching is assessed. This quenching is a result of ligand-protein interactions, allowing for the semi-quantitative evaluation of ligand binding to the target protein. 5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	hyperpolarized sample is then subjected to NMR, and the degree of photo-CIDNP quenching is assessed. This quenching is a result of ligand-protein interactions, allowing for the semi-quantitative evaluation of ligand binding to the target protein. 5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	then subjected to NMR, and the degree of photo-CIDNP quenching is assessed. This quenching is a result of ligand-protein interactions, allowing for the semi-quantitative evaluation of ligand binding to the target protein. 5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	the degree of photo-CIDNP quenching is assessed. This quenching is a result of ligand-protein interactions, allowing for the semi-quantitative evaluation of ligand binding to the target protein. 5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	 quenching is assessed. This quenching is a result of ligand-protein interactions, allowing for the semi-quantitative evaluation of ligand binding to the target protein. 5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	 quenching is a result of ligand-protein interactions, allowing for the semi-quantitative evaluation of ligand binding to the target protein. 5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	ligand-protein interactions, allowing for the semi-quantitative evaluation of ligand binding to the target protein. 5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	allowing for the semi-quantitative evaluation of ligand binding to the target protein. 5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	semi-quantitative evaluation of ligand binding to the target protein. 5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	of ligand binding to the target protein. 5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	target protein. 5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	5. Screening of Fragments: The fragments in the library are screened against the
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	The fragments in the library are screened against the
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	are screened against the
deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo Al ffinity & NexMR impro	-
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	target protein, typically
deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo Al ffinity & NexMR impro	
deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo Al ffinity & NexMR impro	through high-throughput
deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo Al ffinity & NexMR impro	methods.
deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo Al ffinity & NexMR impro	The method has been
deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo Al ffinity & NexMR impro	applied to screen fragment
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	molecules against proteins
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	like PIN1, demonstrating its
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	effectiveness and utility in
deepHitMiner to deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo-Al ffinity & NexMR impro	detecting ligand-protein
deepHitMiner to deepHitMiner to utilize 1D NMR levera photo-CIDNP data photo Al ffinity & NexMR impro	interactions.
utilize 1D NMR levera photo-CIDNP data photo Al ffinity & NexMR impro	
photo-CIDNP data photo Al ffinity & NexMR impro	itMiner to will consist on the following
Al ffinity & NexMR impro	ge 1D NMR steps:
	CIDNP data to 1. Add new parsing
l l bioact	
	, , , , , , , , , , , , , , , , , , , ,
predic	tions. compounds interacting with flexible proteins.
	2. Overhaul the core Al
	functions to leverage the
	information of the new
	photo-CIDNP data.
	3. Fix any bugs or limitations
	3. Fix any bugs or limitations detected during the field
	3. Fix any bugs or limitations detected during the field use.
	detected during the field
	detected during the field use.
	detected during the field use. Once these steps are
	detected during the field use.

		licensing.
Virtual screening guided by 1D NMR in incremental feedback loops (multiple rounds) AI ffinity & NexMR	Train deepHitMiner, screen VS library (e.g., Enamine 220,000 Fragment Collection), select ~ 30 chemically diverse top-scored compounds for experimental validation.	The chemical library will be prepared with standard industry tools (LigPrep), compound geometries will be optimized and SQM partial charges will be computed using third-party software. A deepHitMiner model will be trained with specially designed feature vectors (2D molecular representations) that encompass structural information derived from the analysis of photo-CIDNP spectra. This model will be used to score the molecules in the chemical library and assign a probability in [0,1] (the higher the more probable the molecules to bind to the protein). The ~1000 top-scred compounds will be fed to our diversity selector algorithm to select ~30 of them that are structurally diverse, have good solubility, are synthetically accessible, contain interesting chemical groups (e.g. ligand epitopes from photo-CIDNP screening) and don't contain chemical groups that confer toxicity or promiscuity. Finally, selected top-scored analogs will be selected for synthesis by AnHorn or ordered from vendors. These ~30 compounds, which will be either ordered or synthesized by AnHorn, will be subjected to experimental validation of binding to the AR-V7-Cterm.
		This procedure will be repeated in incremental feedback loops, each time selecting new molecules for experimental validation,

				solving their 3D structure in complex with the receptor and retraining deepHitMiner. Optionally, once we obtain the first 3D structures of P-L complexes we will shift to structure-based drug design with 3D pharmacophore feature vectors encompassing structural information from photo-CIDNP data.
2.2 Hit validation (weight: 35%) Executing company : AnHorn Medicines (weight: 30 %) AI ffinity & NexMR & CEITEC MU (weight: 70 %)	Binding validation and binding site characterization	Binding site mapping of hits by HDX-MS (optional) AI ffinity	Run non-equilibrium, millisecond HDX-MS, which is suitable for IDPs, identify binding residues for each hit.	Binding site mapping by Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) is a technique used to identify the regions of a protein that undergo changes in hydrogen-deuterium exchange upon binding to a ligand or interacting partner. Type of Data Collected: Mass spectra that provide information about the deuteration levels of the peptides. Experimental Steps: 1. Sample Preparation: Prepare the protein-ligand complex. 2. Deuteration: Exchange the labile hydrogen atoms in the protein with deuterium by incubating the protein in a deuterated buffer or solvent for a specific period of time. This allows labeling of the protein backbone and side-chain amide hydrogens. 3. Proteolytic Digestion: Digest the protein into smaller peptides using an enzyme such as pepsin or trypsin. This generates peptides that can be separated and analyzed by mass spectrometry. 4. Peptide Analysis: Inject the peptides into a mass spectrometer, where they are ionized and fragmented.

Size-exclusion chromatography to validate hit binding AI ffinity & CEITEC MU AI ffinity & CEITEC MU is valid.	 and shape to separate biomolecules as they pass through a porous stationary phase (column). Larger molecules elute first because they are not able to enter the pores and thus take a shorter path through the column, while smaller molecules enter the pores and traverse a longer path, resulting in delayed elution. Experimental Steps: Sample Application: Load the sample containing the mixture of biomolecules

		prepared in a buffer
		compatible with the mobile
		phase.
		2. Elution: Pump a suitable
		mobile phase (e.g., buffer)
		through the column,
		allowing the biomolecules to
		travel through the stationary
		phase.
		3. Separation: As the
		biomolecules travel through
		the column, they are
		separated based on their
		size. Larger molecules pass
		more rapidly through the
		column as they are excluded
		from entering the pores,
		while smaller molecules
		spend more time within the
		pores and elute later.
		4. Detection: Collect
		fractions or continuously
		monitor the eluent as it exits
		the column using various
		detection techniques, such
		as UV spectroscopy,
		refractive index detection, or
		fluorescence detection. This
		provides information about
		the elution profile of the
		separated biomolecules.
		Information Provided:
		Information about the size,
		oligomeric state, and degree
		of aggregation of sample.
		Protein-hit complexes will
		elute slower than the apo
		form. This information
		provides implicit
		confirmation of hit binding
		to the AR-V7-Cterm.
	ono Knowing the sectors -	
NMR-based backt	J J	Measurement of HNCACB,
chemical shifts	backbone chemical shifts to atoms of	CBCA(CO)NH, HNCO, and HNCACO NMR spectra of ^15N
assignment	C MU AR-V7-Cterm allows us	labeled AR-V7-Ctem apo form,
AIT MINITY & CEITED	to identify the atoms	spectra processing (same as for
	interacting with the hit	4D NMR structure
	(see next task).	determination) and
		semi-automatic assignment of
		resonances to backbone atoms
		by existing commercial-free
		software.
		Joitware.

Proceedings PL Shape Determine the shape of the			· · · · ·	
2D-NMR AR-V7-Cterm - hit on the single concentration and overlay with the spectrum of termanotomic assignment of resonances to backbone atoms termatorial cassignment of termanotomic assignment at the termanotomic assignment and the respectives atoms that have been shifted/changed in the protein-ligand mixture. These protein atoms are the ones that interact with the hit compound. P-LSS content Estimate the (SS) element content of Circular Dicknosin to walidate hit binding. See "1. Receptor Structure" for experimental details. AV7-Cterm - hit complex See "1. Receptor Structure" to experimental details. As V7-Cterm - hit complex we need to measure only the AR-V7-Cterm - hit complex we need to measure only the same except that we will use in addition distance restraints obtained from the analysis of photo-CIDNP spectra to accelerated convergence of structure accluations. Structural analysis P-L shape Determine the shape of the AR-V7-Cterm - hit may the we are straints obtained from the analysis of photo-CIDNP spectra apo, it means that the hit is addition distance restraints obtained from the analysis of photo-CIDNP spectres of structure determination pipeline to utilize 1D pipeline to leverage 1D NMR thructure determination pipeline to utilize 1D pipeline to leverage 1D NMR thructure determination		Mapping of		
Al [finity & CETEC MU mixture at a single concentration and overlay with the spectrum of AR-V7-Cterm ap to determination) and sem-automatic assignment of sem-automatic assignment of sem-automatic assignment of sem-automatic assignment of sem-automatic assignment of software, which is followed by identification of the peaks and the respectives atoms that have been shifted/changed in the protein-ligand mixture. These protein atoms are the ones that interact with the hit compound. P-L SS content determination by Circular Dichroism to validate hit binding. Al [finity & CETEC MU Estimate the (SS) element content of each AR-V7-Cterm apo, it means that the hit is valid. Estimate the (SS) element content of each AR-V7-Cterm apo, it means that the hit is valid. Structural analysis P-L shape determination by SAXS to validate hit binding AI [finity & CETEC MU Estimate the shape of the AR-V7-Cterm - hit mixture. If it deviates from that of the AR-V7-Cterm apo, it means that the hit is valid. See "1. Receptor Structure" for experiments to 4D NOESY peaks of the AR-V7_Cterm apo its to the shape of the AR-V7-Cterm apo, it manalysis of photo-CIDNP spectra to accelerated convergence of structure determination pipeline to utilize 1D pipeline to utilize 1D pipeline to utilize 1D pipeline to utilize 1D pipeline to leverage 1D NMR photo-CIDNP spectra applieline determination pipeline to utilize 1D pipeline to leverage 1D NMR photo-CIDNP The 4D NMR structure determination pipeline to utilize 1D pipeline to leverage 1D NMR		-		-
Structural analysis P.I. Shape determination pipeline to utilize Adaptation of the 440 NMR structure determination pipeline to utilize NMR photo-CIDNP Ser "1. Receptor Structure" or exparimental details. Structural analysis Structural analysis P.I. Shape determination validate htt binding AI finity & CETEC MU Estimate the (SS) element content of means that the hit valid. See "1. Receptor Structure" for exparimental details. Assuming that we already have the resonance assignments to 4D NOESY peaks of the AR-V7_Cetern apo form, to solve the structure of the analysis of photo-CIDNP spectra to accelerated convergence of structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo, it means that the hit is analysis of photo-CIDNP spectra to accelerated convergence of structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of AR-V7-Cterm apo, it means that the hit is analysis of photo-CIDNP spectra to accelerated convergence of structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm apo from AVT-Cterm apo from AVT of the pape of the AR-V7-Cterm apo from the shape of the AR-V7-Cterm apo f				-
Structural analysis PL-SS content determination by Circular Dichroism to validate hit binding AI [finity & CETTEC MU Estimate the (SS) element content of each AR-V7-Cterm - hit mixture. If it deviates from that of the AR-V7-Cterm apo, it mess that the hit is validate hit binding AI [finity & CETTEC MU Estimate the (SS) element content of each AR-V7-Cterm - hit mixture. If it deviates from that of the AR-V7-Cterm apo, it mess that the hit is validate hit binding AI [finity & CETTEC MU Estimate the (SS) element content of each AR-V7-Cterm - hit mixture. If it deviates from that of the AR-V7-Cterm apo, it mess that the hit is valid. See "1. Receptor Structure" for experimental details. Assuming that we already assignments to 4D NOESY peaks of the AR-V7-Cterm - hit mixture. If it deviates from that of the AR-V7-Cterm - hit mixture. If it deviates from that of the AR-V7-Cterm - hit mixture. If it deviates from the shape of AR-V7-Cterm apo, it mess that the hit is valid. Structural analysis PL-shape Determine the shape of RA-V7-Cterm apo, it mess that the hit is valid. See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo, it mess that the hit is valid. Adaptation of the 4D NMR structure determination pipeline to utilize1D pipeline to leverage ID NMR photo-CIDNP data to See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo, it mess that the hit is valid.		AI ffinity & CEITEC MU		
Structural P-L Sa content Estimate the (SS) See "1. Receptor Structure" P-L SS content Estimate the (SS) See "1. Receptor Structure" Identify the interacting See "1. Receptor Structure" See "1. Receptor Structure" Identify the interacting All (Finity & CETTEC MU See "1. Receptor Structure" Identify the interacting All (Finity & CETTEC MU See "1. Receptor Structure" Identify the interacting All (Finity & CETTEC MU See "1. Receptor Structure" Identify the interacting See "1. Receptor Structure" See "1. Receptor Structure" Identify the interacting See "1. Receptor Structure" See "1. Receptor Structure" Identify the interacting See "1. Receptor Structure" See "1. Receptor Structure" Identify the interacting See "1. Receptor Structure" See "1. Receptor Structure" Identify the interacting See "1. Receptor Structure" See "1. Receptor Structure" Identify the interacting See "1. Receptor Structure" See "1. Receptor Structure" Identify the interacting See "1. Receptor Structure" See "1. Receptor Structure" Identify the interacting See "1. Receptor Structure" See "1. Receptor Structure" See "1. Receptor Structure" <td></td> <td></td> <td></td> <td></td>				
PL SS content RA-V7-Cterm apo to resonances to backone atoms by existing commercial-free software, which is followed by identification of the pasks and the respectives atoms that have been shifted/panged in the protein-ligand mixture. These protein atoms are the ones that interact with the hit compound. PL SS content determination by circular Dichroism to validate hit binding. Estimate the (SS) determination by circular Dichroism to validate hit binding. All ffinity & CEITEC MU Estimate the (SA) determination by circular Dichroism to validate hit binding. All ffinity & CEITEC MU Structural PL shape Determine the shape of the pack soft the AR-V7-Cterm - hit is valid. Assuming that we already have the resonance assignments to D0 NOESY spectrum this valid. Structural PL shape Determine the shape of the pack soft the AR-V7-Cterm - hit is validate hit binding. All ffinity & CEITEC MU All finity & CEITEC MU Determine the shape of the procencure will remain the same except that we will use in addition distance. restrains obtained from the analysis of photo-CIDNP spectra to accelerated convergence of structure? Adaptation of the 4D Modify the 4D NMR The 4D NMR structure determination pipeline to leverage the binding. Adaptation of the 4D Modify the 4D NMR The 4D NMR structure determination pipeline to utilize 1D pipeline to leverage to minduce by ligate binding. MMR photo-CIDNP binoming The 4D NMR				-
P-LSS content dentify the interacting atoms (shifted peaks). by existing commercial-free software, which is followed by identification of the peaks and the respectives atoms that have been shifted/changed in the protein-ligand mixture. These protein atoms are the ones that interact with the hit compand. P-LSS content determination by Grcular Dichroism to validate hit binding. Estimate the (SS) See "1. Receptor Structure" for experimental details. For that of the shape of the AR-V7-Cterm apo, it means that the hit is valid. See "1. Receptor Structure" apo form, to solve the structure of the AR-V7-Cterm - hit complex we need to measure only the AD HONE Sy spectrum this stime. The rest of the procedure will remain the same except that we will use in addition distance restraints obtained from the analysis of photo-CIDNP apacity of the AR-V7-Cterm - hit complex we need to measure only the same of AR-V7-Cterm - hit complex we form the shape of the AR-V7-Cterm apo, it means that the hit is valid. Structural analysis P-L shape Determine the shape of the AR-V7-Cterm apo, it means that the hit is valid. AL finity & CEITEC MU to validate hit binding. AL finity & CEITEC MU to validate hit binding. See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo, it means that the hit is valid. AL finity & CEITEC MU hit was a structure Modify the 40 MMR Modify the 40 MMR AL daptation of the 4D MMR Modify the 4D MMR The 4D MMR Structure determination pipeline to leverage to mixe the shape of the AR-V7-Cterm of the AR-V7-Cterm of the AR-V7-Cterm of the AR-V7-Cterm of the AR-V7-Cte			-	-
Structural PL shape Determine the shape of the analysis Determine the shape of the AR-V7-Cterm - hit and distance Structural analysis PL shape Determine the shape of the AR-V7-Cterm - hit and distance Sec *1. Receptor Structure* Structural analysis PL shape Determine the shape of the AR-V7-Cterm - hit and distance Sec *1. Receptor Structure* All finity & CEITEC MU Estimate the (SS) Sec *1. Receptor Structure* Sec analysis Structural analysis PL shape Determine the shape of the AR-V7-Cterm - hit is analysis Sec *1. Receptor Structure* All finity & CEITEC MU Modify the 4D NMR Rev7-Cterm - hit is analysis Sec *1. Receptor Structure* All finity & CEITEC MU Determine the shape of RA-V7-Cterm - hit is analysis of photo-CIDNP Sec *1. Receptor Structure* All finity & CEITEC MU Modify the 4D NMR Sec *1. Receptor Structure* All finity & CEITEC MU Modify the 4D NMR The AR-V7-Cterm apo, it means that the hit is analysis of photo-CIDNP All finity & CEITEC MU Determine the shape of RA-V7-Cterm apo, it means that the hit is analysis of photo-CIDNP Sec *1. Receptor Structure* All finity & CEITEC MU Modify the 4D NMR Sec *1. Receptor Structure* All finity & CEITEC MU Modify the 4D NMR Sec			-	
P-LSS content identification of the peaks and the respectives atoms that have been shifted/changed in the protein-ligand mitture. These protein atoms are the ones that interact with the hit compound. P-LSS content Estimate the (SS) determination by Circular Dichroism to validate hit binding Estimate the (SS) element content of from that of the maps. If it deviates from the shape of the AR-V7-Cterm - hit complex we need to measure only the goneral details. By convergence of structure? Structural analysis P-L shape Determine the shape of determination by SAXS from the shape of ALMENT Corem apo, it maps its at the hit is graid. See "1. Receptor Structure" for experiment details. By convergence of structure accluations. Structural analysis P-L shape Determine the shape of AR-V7-Cterm - hit mixture. The shape of AR-V7-Cterm apo, it maps it and the shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm of the determination pipeline to leverage the twill consist on the following steps: Adaptation of the 4D Modify the 4D MMR The 4D NMR Structure determination pipeline to leverage to find the shape of the AR-V7-Cterm of the shape of the AR-V7-Cterm of t				
P-LSS content determination by Circular Dicknosin to Validate hit binding A11ffinity & CEITEC MUEstimate the (SS) element content of ach R-N-7-Cterm - hit mixture. If it deviates from that of the R-V-7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. Assuming that we already have the resonance assignments to 4D NOESY peaks of the AR-V7-Cterm - hit structureStructural analysisP-L shape determination by SXS to validate hit binding A11ffinity & CEITEC MUDetermine the shape of means that the hit is valid.See "1. Receptor Structure" for experimental details. Assuming that we already have the resonance assignments to 4D NOESY peaks of the AR-V7-Cterm - hit stime. The rest of the procedure will remain the same except that we will use in addition distance remain the same of See "1. Receptor Structure" for experimental details. By convergence of structure for experimental details. By convergence of structure" for experimental details. By convergence of structure for experimental details. By convergence				-
P-L SS content determination by Circular Dichroism to validate hit binding Al ffinity & CEITEC MUEstimate the (SS) element content of cach AR-V7-Cterm - hit mixture. If it deviates from that of the AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. Assuming that we already have the resonance apo form, to solve the structure of the AR-V7-Cterm - hit complex we need to measure only the 4D HCNH NOESY spectrum this time. The rest of the procedure will remain the same except that we will use in addition distance restraints obtained from the analysisStructural analysisP-L shape determination by SAXS to validate hit binding, AI ffinity & CEITEC MUDetermine the shape of RA-V7-Cterm - hit mixture. If it deviates valid.See "1. Receptor Structure" form the shape of the AR-V7-Cterm - hit comperimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm apo, it means that the hit is valid.Structural analysisP-L shape determination by SAXS pack and the binding, AI ffinity & CEITEC MUDetermine the shape of RA-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" form with the shape of the AR-V7-Cterm apo from with the shape of th				-
P-L SS content determination by Circular Dichroism to validate hit binding AI ffnity & CEITEC MUEstimate the (SS) element content of each RA-V7-Cterm - hit mixture. If it deviates from that of the AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details.Structural analysisP-L shape elemention by SAXS to validate hit binding AI ffnity & CEITEC MUEstimate the shape of mass that the hit is valid.See "1. Receptor Structure" for experimental details.Structural analysisP-L shape determination by SAXS to validate hit binding AI ffnity & CEITEC MUDetermine the shape of RA-V7-Cterm - hit complex we need to measure only the 4D HCMH NOESY spectrum this time. The rest of the erscruture determination by SAXS to validate hit binding AI ffnity & CEITEC MUDetermine the shape of RA-V7-Cterm - hit mixture. fif deviates from the shape of RA-V7-Cterm - hit mixture. from with the shape of the AV-7-Cterm apo from With the shape of the AV-7-Cterm apo from With the shape of the				-
P-L SS content protein alons are the ones that interact with the hit compound. Ser "J. Receptor Structure" See "J. Receptor Structure" Idetermination by Girdlate hit binding: AI ffinity & CEITEC MU See "J. Receptor Structure" AI ffinity & CEITEC MU For that of the ask AR-V7-Cterm - hit invaries, if it deviates from that of the AR-V7-Cterm - hit complex we need to measure only the structure of the AR-V7-Cterm - hit complex we need to measure only the 4D HONE Sy spectrum this time. The rest of the AR-V7-Cterm - hit complex we need to measure only the 4D HONE Sy spectrum this time. The rest of the procedure will remain the same except that we will use in addition distance restraints obtained from the analysis of photo-CIDNP spectra to accelerated convergence of structure" for experimental details. By comparing the general shape of the AR-V7-Cterm - hit means that the hit is valid. See "1. Receptor Structure" for the AR-V7-Cterm - hit means that the hit is valid. Adaptation of the 4D Modify the 4D NMR structure determination pipeline to utilize 1D, NMR photo-CIDNP data The 4D NMR structure determination pipeline to leverage 1D NMR				_
P-LSS content determination by Circular Dichroism to validate hit binding Al ffinity & CEITEC MUEstimate the (SS) each AR-V7-Cterm - hit mixture. If it deviates from that of the AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. Assuming that we already have the resonance assignments to 4D NOESY peaks of the AR-V7_Cterm apo form, to solve the structure of the AR-V7-Cterm - hit means that the hit is valid.See "1. Receptor Structure" for experimental details. Assuming that we already have the resonance assignments to 4D NOESY peaks of the AR-V7_Cterm apo form, to solve the structure of the AR-V7-Cterm - hit complex we need to measure only the 4D HCNH NOESY spectrum 				
Image: structural analysisP-L shape determination by SAXS to transmit with the hit is analysisDetermine the shape of the AR-V7-Cterm - hit mixture. If it deviates from that of the AR-V7-Cterm apo, it means that the hit is valid.for experimental details. Assuming that we already have the resonance assignments to 4D NOESY peaks of the AR-V7_Cterm - hit complex we need to measure only the 4D HONH NOESY spectrum this time. The rest of the procedure will remain the same except that we will use in addition distance restraints obtained from the analysis of photo-CIDNP spectra to accelerated convergence of structure? for experimental details. By comparing the general shape of the AR-V7-Cterm apo, it means that the hit is valid.Structural analysisP-L shape determination by SAXS to validate hit binding AI finity & CEITEC MUDetermine the shape of analysis of photo-CIDNP spectra to accelerated convergence of structure? for experimental details. By comparing the general shape of the AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure? for experimental details. By comparing the general shape of the AR-V7-Cterm apo, it means that the hit is valid.Adaptation of the 4D NMR structure determination pipeline to utilize 1D NMR photo-CIDNP data toModify the 4D NMR structure determination pipeline utilize 1D NMR photo-CIDNP data to				interact with the hit compound.
determination by Circular Dichroism to validate hit binding All finity & CEITEC MUelement content of each AR-V7-Cterm -hit mixture. If it deviates from that of the AR-V7-Cterm apo, it means that the hit is valid.for experimental details. Assuming that we already have the resonance assignments to 4D NOESY peaks of the AR-V7_C-term apo form, to solve the structure of the AR-V7-Cterm - hit complex we need to measure only the 4D DHNH NOESY spectrum this time. The rest of the procedure will remain the same except that we will use in addition distance restraints obtained from the analysis of photo-CIDNP spectra to accelerated convergence of structure determination by SAXS from the shape of AR-V7-Cterm - hit mixture. If deviates from the shape of AR-V7-Cterm - hit mixture. from with the shape of the AR-V7-Cterm apo from with the shape of		P-L SS content	Estimate the (SS)	See "1. Receptor Structure"
Circular Dichroism to validate hit binding Al finity & CETTEC MU imature. If it deviates from that of the AR-V7-Cterm apo, it means that the hit is valid.Assuming that we already have the resonance assignments to 4D NOESY peaks of the AR-V7_Cterm apo form, to solve the structure of the AR-V7-Cterm - hit complex we need to measure only the 4D HCNH NOESY spectrum this time. The rest of the procedure will remain the same except that we will use in addition distance restraints obtained from the analysisStructural analysisP-L shape determination by SAXS to validate hit binding Al finity & CETTEC MUDetermine the shape of AR-V7-Cterm apo, it means that the hit is valid.Assuming that we already have the resonanceDetermine the shape of AR-V7-Cterm apo, it means that the hit is valid.Assuming that we already have the resonance analysisP-L shape determination by SAXS to validate hit binding Al finity & CETTEC MUAdaptation of the 4D NMR structure determination pipeline to utilize 1D NMR photo-CIDNP dataDetermine the shape of AR-V7-Cterm apo, it means that the hit is valid.Adaptation of the 4D NMR the pipeline to leverageModify the 4D NMR structure determination pipeline to leverageThe 4D NMR structure determination pipeline to leverage following steps: 1. Add new parsing functions to read 1D NMR				-
Validate hit binding Al finity & CEITEC MU Al finity & CEITEC MU analysismixture. If it deviates from that of the AR-V7-Cerm apo, to solve the structure of the AR-V7-Cerm - hit complex we need to measure only the 4D HCNH NOESY spectrum this time. The rest of the procedure will remain the same except that we will use in addition distance restraints obtained from the analysis of photo-CIDNP spectraStructural analysisP-L shape determination by SAXS to validate hit binding Al finity & CEITEC MU to validate hit binding Al finity & CEITEC MU RestrictDetermine the shape of analysisSee "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo, it mixture. If it deviates areas that the hit is valid.Adaptation of the 4D NMR structure determination pipeline to utilize 1D NMR photo-CIDNP dataModify the 4D NMR structure determination pipeline to leverage following steps: 1. Add new parsing functions to read 1D NMR			each AR-V7-Cterm - hit	•
AI ffinity & CEITEC MU RR-V7-Cterm apo, it means that the hit is valid.assignments to 4D NOESY peaks of the AR-V7_C-term apo form, to solve the structure of the AR-V7-Cterm - hit complex we need to measure only the 4D HCNH NOESY spectrum this time. The rest of the procedure will remain the same except that we will use in addition distance restraints obtained from the analysis of photo-CIDNP spectra to accelerated convergence of structure calculations.Structural analysisP-L shape determination by SAXS to validate hit binding AI ffinity & CEITEC MUDetermine the shape of ark-V7-Cterm - hit mixture. If t deviates from the shape of the R-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm apo from with the shape of the <td></td> <td></td> <td>mixture. If it deviates</td> <td></td>			mixture. If it deviates	
AR-V7-Cterm apo, it means that the hit is valid.peaks of the AR-V7_C-term apo form, to solve the 				assignments to 4D NOESY
Structural analysisP-L shape determination by SAXS analysisDetermine the shape of analysisSee "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm - hit mixture. If it deviates from the shape of AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm - hit mixture waid.Adaptation of the 4D NMR structure determination pipeline to utilize 1D pipeline to utilize 1D pipeline to leverage dataModify the 4D NMR structure determination pipeline to utilize 1D pipeline to leverage to NMR photo-CIDNP to NMR photo-CIDNP dataThe 4D NMR structure determination pipeline to leverage to NMR photo-CIDNP to recent approximation pipeline to utilize 1D to NMRThe 4D NMR structure determination pipeline to leverage to NMR photo-CIDNP to recent approximation the receptor induced by tigand binding,			-	-
valid.structure of the AR-V7-Cterm - hit complex we need to measure only the 4D HCNH NOESY spectrum this time. The rest of the procedure will remain the same except that we will use in addition distance restraints obtained from the analysis of photo-CIDNP spectra to accelerated convergence of structure calculations.Structural analysisP-L shape determination by SAXS each AR-V7-Cterm - hit mixture. If it deviates AI finity & CEITEC MU Adaptation of the 4D NMR structure determination pipeline to utilize 1D NMR photo-CIDNP dataDetermine the shape of AR-V7-Cterm apo it means that the hit is valid.Structure?' See "1. Receptor Structure?' for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of AR-V7-Cterm apo, it means that the hit is valid.Adaptation of the 4D NMR structure determination pipeline to utilize 1D NMR photo-CIDNP dataModify the 4D NMR tructure tructure tructure the the valid consist on the following steps: 1. Add new parsing functions to read 1D NMR				
Structural analysisP-L shape determination by SAXS to validate hit binding Al ffinity & CEITEC MUDetermine the shape of mansular to validate hit binding mansular to validate hit binding Al ffinity & CEITEC MUDetermine the shape of mixture. If it deviates from the shape of the AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the validate hit binding Al ffinity & CEITEC MUDetermine the shape of mixture. If it deviates from the shape of the valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for with the shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm apo from with the shape of the dataAdaptation of the 4D NMR structure determination pipeline to utilize 1D pipeline to utilize 1D pipeline to utilize 1D pipeline to leverage 1D NMR photo-CIDNP data toThe 4D NMR structure determination the or prosist on the following steps: 1. Add new parsing functions to read 1D NMR			valid.	-
Structural analysisP-L shape determination by SAXS to validate hit binding Al ffinity & CEITEC MUDetermine the shape of mansular to validate hit binding mansular to validate hit binding Al ffinity & CEITEC MUDetermine the shape of mixture. If it deviates from the shape of the AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the validate hit binding Al ffinity & CEITEC MUDetermine the shape of mixture. If it deviates from the shape of the valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for with the shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm apo from with the shape of the dataAdaptation of the 4D NMR structure determination pipeline to utilize 1D pipeline to utilize 1D pipeline to utilize 1D pipeline to leverage 1D NMR photo-CIDNP data toThe 4D NMR structure determination the or prosist on the following steps: 1. Add new parsing functions to read 1D NMR				
Structural analysisP-L shape determination by SAXS to validate hit binding Al ffnity & CEITEC MU NMR structure determination of the 4D NMR structure determinationDetermine the shape of act AR-V7-Ctern - hit mixture. If it deviates Al ffnity & CEITEC MU NMR structure determinationDetermine the shape of act AR-V7-Ctern - hit mixture. If it deviates Al ffnity & CEITEC MU NMR structure determinationDetermine the shape of act AR-V7-Ctern - hit mixture. If it deviates Al ffnity & CEITEC MU NMR structure determinationDetermine the shape of act AR-V7-Ctern - hit mixture. If it deviates Al ffnity & CEITEC MU Pipeline to utilize 1D pipeline to utilize 1D pipeline to utilize 1D pipeline to leverage 1D NMR photo-CIDNP data toAd PhCNH NOESY spectrum this time. The rest of the procedure will remain the same except that we will use in addition distance restraints obtained from the analysis of photo-CIDNP spectra to accelerated convergence of structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo, it means that the hit is valid.Adaptation of the 4D NMR structure determination pipeline to utilize 1D pipeline to leverage 1D NMR hoto-CIDNP data toThe 4D NMR structure determination pipeline update will consist on the following steps: 1. Add new parsing functions to read 1D NMR				
Structural analysisP-L shape determination by SAXS to validate hit binding AI ffinity & CEITEC MU NMR structure determination of the 4D NMR structure determinationDetermine the shape of analysis diphoto-CIDNP spectra to accelerated convergence of structure restraints obtained from the analysis of photo-CIDNP spectra to accelerated convergence of structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from the shape of AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the shape of the AR-V7-Cterm - hit mixtureAdaptation of the 4D NMR structure determination pipeline to utilize 1D pipeline to utilize 1D pipeline to leverage 1D NMR dataModify the 4D NMR structure the to leverage 1D NMR photo-CIDNP data to				
Structural analysisP-L shape determination by SAXS to validate hit binding AI ffinity & CEITEC MUDetermine the shape of act AR-V7-Cterm - hit mixture. If it deviates from the shape of AR-V7-Cterm apo, it means that the hit is valid.Determine the shape of ach AR-V7-Cterm - hit mixture. If it deviates for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm - hit mixture. If it deviates from with the shape of AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm - hit mixture. If it deviates from with the shape of the AR-V7-Cterm - hit mixture we can study the conformational changes in the receptor induced by ligand binding.Adaptation of the 4D NMR structure determination pipeline to utilize 1D NMR photo-CIDNP dataModify the 4D NMR structure determination pipeline to leverage 1D NMR photo-CIDNP data toThe 4D NMR structure determination the or ead 1D NMR				-
Structural analysisP-L shape determination by SAXS to validate hit binding AI ffinity & CEITEC MUDetermine the shape of each AR-V7-Cterm - hit mixture. If it deviates from the shape of AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of AR-V7-Cterm apo, it means that the hit is valid.Adaptation of the 4D NMR structure determination pipeline to utilize 1D NMR photo-CIDNP dataModify the 4D NMR structure the validate of the valid and the pipeline to leverage 1D NMR photo-CIDNP data to				
Structural analysisP-L shapeDetermine the shape of each AR-V7-Cterm - hit mixture. If it deviates AL ffinity & CEITEC MUDetermine the shape of AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm of the AR-V7-Cterm of the AD NMR structure determination pipeline to utilize 1D pipeline to leverage 1D NMR photo-CIDNP data toThe 4D NMR functions to read 1D NMR				
Structural analysisP-L shape determination by SAXS to validate hit binding AI ffinity & CEITEC MUDetermine the shape of each AR-V7-Cterm - hit mixture. If it deviates fAR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of AR-V7-Cterm - hit means that the hit is valid.Adaptation of the 4D NMR structure determination pipeline to utilize 1D NMR photo-CIDNP dataModify the 4D NMR structure determination pipeline to leverage 1D NMR photo-CIDNP data to				
Structural analysisP-L shape determination by SAXS to validate hit binding AI ffinity & CEITEC MUDetermine the shape of AR-V7-Cterm - hit mixture. If it deviates from the shape of AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of AR-V7-Cterm - hit mixture we can study the conformational changes in the receptor induced by ligand binding.Adaptation of the 4D NMR structure determination pipeline to utilize 1D NMR photo-CIDNP dataModify the 4D NMR structure determination pipeline to leverage 1D NMR photo-CIDNP data toThe 4D NMR structure determination to read 1D NMR				
Structural analysisP-L shape determination by SAXS to validate hit binding AI ffinity & CEITEC MUDetermine the shape of each AR-V7-Cterm - hit mixture. If it deviates from the shape of AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of AR-V7-Cterm apo, it means that the hit is valid.Adaptation of the 4D NMR structure determination pipeline to utilize 1D NMR photo-CIDNP dataModify the 4D NMR structure determination pipeline to leverage 1D NMR photo-CIDNP data toThe 4D NMR structure determination the following steps: 1. Add new parsing functions to read 1D NMR				
Structural analysisP-L shape determination by SAXS to validate hit binding AI ffinity & CEITEC MUDetermine the shape of each AR-V7-Cterm - hit mixture. If it deviates from the shape of AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of AR-V7-Cterm - hit mixture. If it deviates from the shape of AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm - hit mixture we can study the conformational changes in the receptor induced by ligand binding.Adaptation of the 4D NMR structure determination pipeline to utilize 1D pipeline to leverage NMR photo-CIDNP dataModify the 4D NMR the leverage 1D NMR photo-CIDNP data toThe 4D nMR structure following steps: 1. Add new parsing functions to read 1D NMR				
Structural analysisP-L shape determination by SAXS to validate hit binding AI ffinity & CEITEC MUDetermine the shape of each AR-V7-Cterm - hit mixture. If it deviates from the shape of AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of AR-V7-Cterm - hit mixture we can study the conformational changes in the receptor induced by ligand binding.Adaptation of the 4D NMR structure determination pipeline to utilize 1D NMR photo-CIDNP dataModify the 4D NMR structure trueThe 4D NMR structure determination pipeline update will consist on the following steps: 1. Add new parsing functions to read 1D NMR				•
Structural analysisP-L shape determination by SAXS to validate hit binding AI ffinity & CEITEC MUDetermine the shape of ark-V7-Cterm - hit mixture. If it deviates from the shape of AR-V7-Cterm apo, it means that the hit is valid.See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm - hit mixture we can study the conformational changes in the receptor induced by ligand binding.Adaptation of the 4D NMR structure determination pipeline to utilize 1D pipeline to utilize 1D pataModify the 4D NMR structure determination pipeline to leverage 1D NMRThe 4D NMR structure determination the induced structure determination the ata				-
analysisdetermination by SAXS to validate hit binding AI ffinity & CEITEC MUeach AR-V7-Cterm - hit mixture. If it deviates from the shape of AR-V7-Cterm apo, it means that the hit is valid.for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm - hit mixture we can study the conformational changes in the receptor induced by ligand binding.Adaptation of the 4D NMR structure determination pipeline to utilize 1D pataModify the 4D NMR structure determination pipeline to leverage 1D NMRThe 4D NMR structure determination to rosist on the following steps: 1. Add new parsing functions to read 1D NMR	Churren L	D Labora		
to validate hit binding AI ffinity & CEITEC MU AI ffinity & CEITEC MU AR-V7-Cterm apo, it means that the hit is valid. Adaptation of the 4D NMR structure determination pipeline to utilize 1D NMR photo-CIDNP data Adaptation of control of the 4D NMR structure detarmination pipeline to utilize 1D NMR photo-CIDNP data Adaptation of the 4D NMR structure detarmination pipeline to utilize 1D NMR photo-CIDNP data Adaptation of the 4D NMR structure detarmination pipeline to utilize 1D pipeline to leverage NMR photo-CIDNP data				
AI ffinity & CEITEC MUfrom the shape of AR-V7-Cterm apo, it means that the hit is valid.of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm - hit mixture we can study the conformational changes in the receptor induced by ligand binding.Adaptation of the 4DModify the 4D NMR NMR structure determinationThe 4D NMR structure determinationAdaptation of the 4DModify the 4D NMR pipeline to utilize 1DThe 4D NMR structure determinationMR photo-CIDNP dataphoto-CIDNP data toI. Add new parsing functions to read 1D NMR	analysis			
AR-V7-Cterm apo, it means that the hit is valid.AR-V7-Cterm apo, it means that the hit is valid.from with the shape of the AR-V7-Cterm - hit mixture we can study the conformational changes in the receptor induced by ligand binding.Adaptation of the 4D NMR structure determination pipeline to utilize 1D pipeline to utilize 1D dataModify the 4D NMR structure determinationThe 4D NMR structure determination pipeline to leverage 1D NMRNMR photo-CIDNP dataD NMR photo-CIDNP data to1. Add new parsing functions to read 1D NMR		-		
means that the hit is valid.means that the hit is valid.from with the snape of the AR-V7-Cterm - hit mixture we can study the conformational changes in the receptor induced by ligand binding.Adaptation of the 4DModify the 4D NMR structure determinationThe 4D NMR structure determinationAdaptation of the 4DModify the 4D NMR structure determinationThe 4D NMR structure determinationMR structure pipeline to utilize 1Dpipeline to leverage photo-CIDNP data toThe 4D NMR structure determination to read 1D NMR				-
valid.AR-V7-Cterm - hit mixture we can study the conformational changes in the receptor induced by ligand binding.Adaptation of the 4DModify the 4D NMR structure determinationThe 4D NMR structure determinationMR structure determinationstructure determinationThe 4D NMR structure determinationNMR photo-CIDNP data D NMR photo-CIDNP data toInctions to read 1D NMR				-
Adaptation of the 4DModify the 4D NMRThe 4D NMR structureNMR structurestructuredeterminationdeterminationpipeline to utilize 1Dpipeline to leverageNMR photo-CIDNP1D NMR1. Add new parsingdataphoto-CIDNP data tofunctions to read 1D NMR				
Adaptation of the 4DModify the 4D NMRThe 4D NMR structureAdaptation of the 4DModify the 4D NMRThe 4D NMR structureNMR structurestructuredetermination pipelinedeterminationdeterminationupdate will consist on thepipeline to utilize 1Dpipeline to leveragefollowing steps:NMR photo-CIDNP1D NMR1. Add new parsingdataphoto-CIDNP data tofunctions to read 1D NMR				-
Adaptation of the 4DModify the 4D NMRIigand binding.Adaptation of the 4DModify the 4D NMRThe 4D NMR structureNMR structurestructuredetermination pipelinedeterminationdeterminationupdate will consist on thepipeline to utilize 1Dpipeline to leveragefollowing steps:NMR photo-CIDNP1D NMR1. Add new parsingdataphoto-CIDNP data tofunctions to read 1D NMR				-
Adaptation of the 4DModify the 4D NMRThe 4D NMR structureNMR structurestructuredetermination pipelinedeterminationdeterminationupdate will consist on thepipeline to utilize 1Dpipeline to leveragefollowing steps:NMR photo-CIDNP1D NMR1. Add new parsingdataphoto-CIDNP data tofunctions to read 1D NMR				
NMR structure determinationstructure determinationdetermination update will consist on the following steps:NMR photo-CIDNP data1D NMR photo-CIDNP data to1. Add new parsing functions to read 1D NMR				
determinationdeterminationupdate will consist on thepipeline to utilize 1Dpipeline to leveragefollowing steps:NMR photo-CIDNP1D NMR1. Add new parsingdataphoto-CIDNP data tofunctions to read 1D NMR		Adaptation of the 4D	Modify the 4D NMR	The 4D NMR structure
pipeline to utilize 1Dpipeline to leveragefollowing steps:NMR photo-CIDNP1D NMR1. Add new parsingdataphoto-CIDNP data tofunctions to read 1D NMR		NMR structure	structure	determination pipeline
NMR photo-CIDNP1D NMR1. Add new parsingdataphoto-CIDNP data tofunctions to read 1D NMR		determination	determination	update will consist on the
data photo-CIDNP data to functions to read 1D NMR		pipeline to utilize 1D	pipeline to leverage	following steps :
		NMR photo-CIDNP	1D NMR	1. Add new parsing
All ffinity & NexMR accelerate P-I nhoto-CIDNP data of		data	photo-CIDNP data to	functions to read 1D NMR
		AI ffinity & NexMR	accelerate P-L	photo-CIDNP data of

		structure calculation convergence.	compounds interacting with flexible proteins to create structural 1D distance restraints. 2. Overhaul the structural modeling component to leverage the new 1D distance restraints. 3. Fix any bugs or limitations detected during the field use. Once these steps are fulfilled, the new pipeline version will be ready for application and licensing.
	Protein-Hit Structure determination by 4D-NMR or X-ray AI ffinity & CEITEC MU	Determine the 3D structure of valid AR-V7-Cterm - hit complexes to enable structure-based drug design.	See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm - hit mixture we can study the conformational changes in the receptor induced by ligand binding.
Kd measurem	Kd measurements of screened hits (photo-CIDNP, MST, 2D-NMR) AI ffinity & NexMR & CEITEC MU	Determined Kd of all valid hits independently by photo-CIDNP (NexMR), MST (AI ffinity & CEITEC MU) and 2D TROSY-HSQC by titrating at 6 hit concentrations.	 Depending on the specific technique Kd measurements will differ. The general flow looks as below: Binding Assay Setup: Prepare a series of protein-ligand mixtures with varying concentrations of the ligand, while keeping the protein concentration constant. Typically, 6 ligand concentrations spanning several orders of magnitude are used. Quantification of Bound Ligand: Measure the concentration of the ligand in the bound fraction (protein-ligand complex) Data Analysis: Plot the concentration. Use appropriate mathematical models,

1			· · · · · · · · · · · · · · · · · · ·
			such as the binding equation derived from the law of mass action, to fit the data and determine the Kd value. Nonlinear regression analysis is commonly employed for this purpose. 4. Kd Calculation: The Kd value represents the ligand concentration at which half of the protein binding sites are occupied. It can be directly determined from the fitted curve or calculated from the equilibrium dissociation constant
			equation.
Compound synthesis		Synthesize 10-15 potential small molecules based on the results of the Kd values	Once the newly synthesized compound is successfully obtained, it needs to be appropriately purified.
	Verification of hit compound structure AnHorn Medicines	Verification of 10-15 potential small molecules for in vitro assay	Chemists also need to develop and establish efficient analysis platforms and methods using LC-MS, NMR, and HPLC to confirm the accuracy of the
In vitro experiments	Growth inhibition assessment of hits on prostate cancer cells AnHorn Medicines	Test the inhibitory effect on cancer cell growth of the 10-15 selected small molecules	compound's structure. In this experiment, we aim to confirm whether structurally modified inhibitors can effectively suppress tumor cell proliferation. The experimental procedure involves seeding human prostate cancer cells into a 96-well plate and incubating them at 37°C with 5% CO2 for one day. Afterward, the tested drugs, which have been diluted in a series, are added to the culture medium and incubated for 5-7 days. MTS reagent is then added to the wells, and the plate is incubated at 37°C for 1 hour. Subsequently, the optical density (OD) at 490 nm is measured using a

2.3	NMR-AI & in	Hit structure	Obtain 10-20 novel	full-spectrum plate reader to calculate the concentration of the drug that causes a 50% inhibition of prostate cancer cell proliferation, known as the IC50 value. Based on the preliminary
ITIL LU LEAU	silico-based design	optimization by in silico method AnHorn Medicines Adaptation of the deepScaffOpt to	small molecules based on the optimization results Modify deepScaffOpt to	Hits obtained from the previous stage and the co-crystal structure with AR-DBD, we will utilize the module within our internal drug platform to perform compound structure modifications according to the defined binding pocket features. Subsequently, we will re-dock the modified compounds to predict their binding affinities. The deepScaffOpt update will consist on the following
		utilize 1D NMR photo-CIDNP data AI ffinity & NexMR	accept 1D NMR photo-CIDNP data for model training and enable both ligand- and structure-based drug design with higher accuracy	steps: 1. Add new parsing functions to read 1D NMR photo-CIDNP data of compounds interacting with flexible proteins. 2. Overhaul the core Al functions to leverage the information of the new photo-CIDNP data. 3. Fix any bugs or limitations detected during the field use. Once these steps are fulfilled, the new deepScaffOpt version will be ready for application and licensing.
		Hit structure optimization by AI in incremental feedback loops (multiple rounds) AI ffinity & NexMR	Train deepScaffOpt using hits with measured Kd. Create in silico analog library (modified hits) from the strongest hits. Score analog library with deepScaffOpt and select 5-10 molecules for synthesis and Kd measurement.	First hundreds of analogs will be generated from selected hit compounds using third party DL-based de novo drug design code, by simultaneously optimizing properties like synthetic accessibility, solubility, and cytotoxicity. Then a deepScaffOpt model will be trained with specially designed feature vectors (2D

	Structural analysis	Protein-Lead Structure determination by 4D-NMR or X-ray Al ffinity & CEITEC MU	Determine the 3D structure of each AR-V7-Cterm - binder complexes to enable structure-based optimization.	See "1. Receptor Structure" for experimental details. By comparing the general shape of the AR-V7-Cterm apo from with the shape of the AR-V7-Cterm - binder
				mixture we can study the conformational changes in the receptor induced by ligand binding.
	Kd measurements	Kd measurement of modified hits (photo-CIDNP, MST, 2D-NMR) AI ffinity & NexMR & CEITEC MU	Measure Kd of 5-10 synthesized modified hits (as above). Use them to retrain deepScaffOpt and repeat the "Hit structure optimization by AI" task until molecules with nanomolar Kd (leads) are obtained.	Same as in "2.2 Hit Validation".
	Compound synthesis	Purification and analysis of compounds AnHorn Medicines	Synthesize 5-10 potential small molecules based on the results of the Kd values	Same as in "2.2 Hit Validation".
		Verification of optimized compounds AnHorn Medicines	Verification of 5-10 potential small molecules for in vitro assay	Same as in "2.2 Hit Validation".
	In vitro experiments	Growth inhibition assessment of leads on prostate cancer cells AnHorn Medicines	Test the inhibitory	Same as in "2.2 Hit Validation".
Develo	pment of PROT	ACs for AR-V7 [weig	ght: 15%]	
	In silico-based design	AR-V7 PROTAC structure design AnHorn Medicines	Design 10–20 AR-V7 protein PROTACs based on in silico methods	To design the potential compounds as PROTACs, it is necessary to obtain the binding conformation of AR-V7 DBD with the ubiquitin ligase E3. Therefore, researchers at AnHorn Medicines will perform protein-protein docking experiments. All possible binding modes between the two proteins, obtained through rotation and translation, will be evaluated using energy-based scoring functions to predict the

desigr synthe	n and V esis d A	/erification of lesigned compounds AnHorn Medicines	Synthesize 5-10 potential PROTACs based on the results of the predicted binding affinity	feasibility of each binding mode. The binding conformation with the highest score will be selected as the potential binding site for designing AR-V7 PROTACS. Same as in "2.2 Hit Validation".
	iments A	AR-FL/AR-V7 protein	Test the degradation ability of 5-10 selected PROTACs on AR-FL/AR-V7 protein	In this experiment, the efficacy of PROTAC in effectively degrading the target protein is used as an indicator of drug activity. The experimental procedure involves seeding human prostate cancer cells into a 12-well plate and incubating them at 37°C with 5% CO2 for one day. Afterward, the tested drugs, which have been diluted in a series, are added to the culture medium for 0.5-24 hours. Subsequently, the cells are lysed, and the total protein is extracted. Western blotting is then performed to detect the protein levels of the androgen receptor, enabling the calculation of the drug that causes a 50% degradation of the androgen receptor, known as the DC50 value.