FAKULTA)
ELEKTROTECHNICKA
CVUTV PRAZE

//PFiloha €. 2 Smlouvy - Technicka specifikace softwarového rozhrani v ANSI C++

// Source code written by Czech Technical University to specify the conditions
// on the software interroperability for tender procedure. The goods is

// “6D collaborative robot”. Date: May 2021.

// In Czech (“Dodavka kolaborativniho 6D robot”)

// The programming language is ANSI C/C++. The operating system can be

// either 0OS Linux or both 0S Linux and OS MS Windows. The example API should

// be fully available and functional upon the product delivery including the source
// code for API in ANSI C/C++. The API implementation cannot use any commercial

// programming software requiring additional license fees of any kind

// to the debit of Czech Technical University or other chargers and obligations.

#include <cstdlib>
#include <iostream>
#include <iostream>
#include <chrono>
#include <ctime>
#include <cassert>

// Include other libraries needed by the selling party to fullfill the
// condition of the tender procedure

// Use standard namespace
using namespace std;

// COBOT API (Application Programming Interface in ANSI C++)

R
// BEGIN OF API SPECIFICATION

// Connects to the cobot controller on a given IP address
// Returns 0 on success
// Returns -1 on failure

ConnectCobotCommunication (char ipaddress|[])

{
// TO BE IMPLEMENTED BY CONTRACTOR latest at time of goods delivery

return 0; // success

}

// Disconnects the cobot controller on a given IP address
void
DisconnectCobotCommunication (char ipaddress|[])
{
// TO BE IMPLEMENTED BY CONTRACTOR latest at time of goods delivery

}

// Set the parameters to optimize the motion: payload in kg

// and moment of intertia of payload in kg.m2 and the distance

// between the head of robot to the center of gravity of load.

int

SetWeightMomentOfInertia (char ipaddress[], float payloadWeight,
float kgm2, float distance)

{
// TO BE IMPLEMENTED BY CONTRACTOR latest at time of goods delivery

~

EUROPEAN UNION

European Structural and Investing Funds

Operational Programme Research,

Development and Education MINISTRY OF

{ /

FAKULTA)
ELEKTROTECHNICKA
CVUTV PRAZE

if ((payloadWeight >= 0.0) &&
(payloadWeight < 15.5) &&
(kgm2 >= 0.0) &&
(kgm2 <= 0.8)) { // conditions if parameters are set correctly
// Pass to the controller the three values:
// a) payload weight,
// b) payload center of gravity distance,
// c¢) payload moment of inertia

/]

return 0; // OK
}

return -1; // error - out of range

// Start movement of the cobotic arm the a new pose that was set by

// the command It is non-blocking operation, so it returns immediately
// even if the motion is in process

// Returns 0 if the operation was successfully started

// Returns -1 if the operation cannot be executed for some reason -

// - setup was not made yet Now start the movement of a cobot arm to a
// new pose, non-blocking operation
int

ExecuteCobotMotion (char ipaddress([], float eps)

{
// TO BE IMPLEMENTED BY CONTRACTOR latest at time of goods delivery
// nonblocking operation execution

// Execute the motion of a cobot to a new position of joints J06
// with the maximum error at joints eps. The values are given in
// degrees

// returns 0 ... success, returns 1 ... failure, wrong joint
// position required
return 0;

// Stops running motion immediately, not resulting in an error state
// It is non-blocking operation execution

// Returns 0 on success

// Returns a negative value on error, the motion cannot be executed

StopCobotMotion (char ipaddress([])

{
// TO BE IMPLEMENTED BY CONTRACTOR latest at time of goods delivery

return 0; // returns 0 ... success

// Returns current cobot position at six joints at this moment of time
// Returns 0, if cobot is not moving now

// Returns 1, if cobot is moving now

// Returns -1 or other negative value if the cobot motion was not

// successfully completed,

// for example, there was a blocking obstacle on the motion path

int

GetCobotPosition (char ipaddress[], float J06[])

{
// TO BE IMPLEMENTED BY CONTRACTOR latest at time of goods delivery

EUROPEAN UNION

European Structural and Investing Funds

Operational Programme Research,

Development and Education MINISTF

FAKULTA)
ELEKTROTECHNICKA
CVUTV PRAZE

// Get J06[] just now, with the uncertainity of latency by UDP
// communication if the cobot is moving or not

/]
if (1) // to be changed by correct condition
return 0; // return 0 if cobot is not moving at this moment

return 1; // return 1 if the cobot is moving now

}

// If a cobot arm/controller went to a failure state, it removes
// the error state and reinitate the status

int

ReinitiateCobotController (char ipaddress]([])

{
// TO BE IMPLEMENTED BY CONTRACTOR latest at time of goods delivery

// Returns -1 or negative code if the operation failed

return 0; // return 0 if the operation was ended with success

}

// Returns 0, if a cobot arm/controller has no error and is communicating
// Returns a negative value, when the cobotic arm or the controller

// went to a failure

int

IsCobotInErrorState (char ipaddress|[])

{
// TO BE IMPLEMENTED BY CONTRACTOR latest at time of goods delivery

// returns a value corresponding to some error state indicating
// which problem has occurred.

// For example, it can return -1, if the cobot motion was stopped
// during motion by an emergency stop

// It can return -2 if the cobot motion path was blocked by an

// obstacle.

return 0; // not in error state

// It is non-blocking operation execution, returns the status.
// Returns 0 if the cobot is not moving at this moment
// Returns 1 if the cobot is moving at this moment
// Returns -1 or other negative value if the last cobot motion
// operation was not successfully completed, for example, there was a
// blocking obstacle on the motion path
int
IsMoving (char ipaddress][])
{
// TO BE IMPLEMENTED BY CONTRACTOR latest at time of goods delivery
if (1) // to be changed by correct condition
return 0; // return 0 if cobot is not moving at this moment

return 1; // return 1 if the cobot is moving at this moment

// returns negative value if the cobot got to the error state
if (0)
return -1; // error state

EUROPEAN UNION

European Structural and Investing Funds

Operational Programme Research,

Development and Education MINISTF

FAKULTA)
ELEKTROTECHNICKA
CVUTV PRAZE

// Set speed of motion at TCP (tool center point at the mid of flange)
// in degrees/sec

// Returns 0 ... on success, and negative value on failure, possibly
// indicating the problem

// It can be executed only when the cobot is not moving only.

SetSpeedJoints (char ipaddress[], float speed)
{

if (speed < 0) return -1; // error
// TO BE IMPLEMENTED BY CONTRACTOR latest at time of goods delivery

//

return 0; // success

// Sets the speed of motion at TCP in m/s and and accel, decel in m/s"2.
// It has to be set before the motion and not during the motion.

// Returns 0 on success

// Returns -1 on failure, cobot is moving

// Returns -2 on failure, required speed is out of range

// Returns -3 on failure, required acceleration is out of range

// Returns -4 on failure, required deceleration is out of range

SetSpeedTCP (char ipaddress[], float speed, float accel, float decel)

{
// TO BE IMPLEMENTED BY CONTRACTOR latest at time of goods delivery

//

return 0; // success

// This function converts the Jjoints positions to TCP (tool center point at
// the midddle of the cobot head flange

// Returns 0 on success

// Returns -1 on faiulre ... unable to convert, joint position out of range
// J06[] specifies the joints of cobots - input

// TCP specifies the tool center point - position + euler angles,

// position is 3 values, rotation 3 values

ConvertJointsToTCP (char ipaddress[], float J06[6], float TCP[6])

{
// TO BE IMPLEMENTED BY CONTRACTOR latest at time of goods delivery

//

return 0; // success

// Converts the TCP (tool center point at midddle of the cobot head flange)
// to six joints position

// Returns 0 on success.

// Returns -1 on failure ... unable to convert, TCP in input is out of range
// TCP specifies the tool center point - position + euler angles (input)

// J06[] specifies the angles of joints of cobot in range <-180, 180> degrees

ConvertTCPtoJoints (char ipaddress[], float TCP[6], float J06[6])
{

EUROPEAN UNION

European Structural and Investing Funds

Operational Programme Research,

Development and Education MINISTF

Y OF EDUCATION,
JTH AND SPORTS

FAKULTA)
ELEKTROTECHNICKA
CVUTV PRAZE

// TO BE IMPLEMENTED BY CONTRACTOR latest at time of goods delivery

//

return 0; // success

// Set the planned positions at joints for the next motion for the exact

// specification of time at that motion at this command

// Intermediate positions can be set if N>1, it then requires J[]

// array is of length N*6 The values in array timeC[] must be in range

// <0,1> and in ascending order.

//

// Returns 0 ... on success

// Returns -1 ... on failure, the position J[] was incorrectly specified

// Returns -2 ... on failure, the IP address was incorrectly specified

// Returns -3 ... wrong setting of timeC[] array, it is not an ascending order
// It can be sucessfully executed only if the last motion execution is finished.
int

SetPositionForTheNextMotion (

char ipaddress]|],

int N, // how many positions, at least 1

float timeC[], // event times at these positions

float J[], // joints setting for the specified times at multiple of 6 values
float &expectedTime)

// TO BE IMPLEMENTED BY CONTRACTOR latest at time of goods delivery

// Set the expected time for the whole planned motion for current setting
expectedTime = 0; // TO BE IMPLEMENTED BY CONTRACTOR, this line is not correct

return 0; // succcess

// Returns the planned positions at joints for the next motion for the exact

// specification of time at that motion at this command

// TimeC = 0.0 ... corresponds to the sitation when cobot was motion is started

// TimeC = 1.0 ... corresponds to the sitation when cobot was motion is finished
// Returns 0 ... on success

// Returns -1 ... on failure, the time was incorrectly specified

// Returns -2 ... on failure, the IP address was incorrectly specified

// It can be sucessfully executed only if the last motion execution is finished.

int

GetPlannedPositionForNextMotion (char ipaddress[], float timeC, float J[])

{

if ((timeC<0) || (timeC>1.0))
return -1; // the time event is out of range

// TO BE IMPLEMENTED BY CONTRACTOR latest at time of goods delivery

return 0; // succcess

Returns the exact positions at Jjoints for the last motion for the exact
specification of time at that motion

TimeC = 0.0 ... corresponds to the sitation when cobot was motion is started
TimeC = 1.0 ... corresponds to the sitation when cobot was motion is finished

EUROPEAN UNION

European Structural and Investing Funds

Operational Programme Research,

Development and Education MINISTRY OF EDU

AND S

FAKULTA)
ELEKTROTECHNICKA

CVUT V PRAZE
// Returns 0 ... on success
// Returns -1 ... on failure, the cobot is moving
// Returns -2 ... on failure, the cobot has not been moved yet since initialization

// It can be sucessfully executed only if the last motion execution is finished.
int
GetExactPositionForLastMotion (char ipaddress([], float timeC, float JI[])
{
if ((timeC<0) || (timeC>1.0))
return -1; // the time event is out of range

// TO BE IMPLEMENTED BY CONTRACTOR latest at time of goods delivery
// - accurate reading of the motion for cobotic arm
// the hardware accuracy limits that to

return 0; // succcess

AR
// END OF API SPECIFICATION

/e
// BEGIN OF EXAMPLE USAGE

A R R
// Auxiliary function
// Generate a random value in range <0, 1>
double
RO1 () |
return ((double)rand())/(double)RAND_MAX;
//return drand48 () ;
}

// Set the initial required position of the cobotic arm
void
SetInitialPose(int a, float JB[6])
{
a=a;
const float range=270; // minimum range is (-270,+270) degrees
// This routine can be change for the purpose of testing so
// physically the cobot does not hit the mounting desk etc.
// For example, it makes sense to restrict more J[0] and J[1]

// The principal is simple: generate a new random pose, each
// time of execution of this program different

// Set angles at joints

JB[0] = 0.0 + RO1()*range;
JB[1] = 0.0 + RO1() *range;
JB[2] = 0.0 + RO1() *range;
JB[3] = 0.0 + RO1() *range;
JB[4] = 0.0 + RO1() *range;
JB[5] = 0.0 + RO1() *range;

}

// Generate a new pose of the cobot arm

void

GenerateNewRandomPose (const float JB[6], float range, float J[6])
{

EUROPEAN UNION
European Structural and Investing Funds
Operational Programme Research,

Development and Education MINISTRY OF EDUCATION,

H AND SPORTS

FAKULTA)
ELEKTROTECHNICKA
CVUTV PRAZE

// Set angles at joints

// This routine can be change for the purpose of testing so
// physically the cobot does not hit the mounting desk etc.
// For example, it makes sense to restrict more J[0] and J[1]

// The principal is simple: generate a new random pose, each
// time of execution of this program different

// minimum range by tender specification is (-270,+270) degrees
const float maxrange=270;

J[0] = JB[0] - range/2.0 + ROLl()*range;
if (J[0] < -maxrange) J[0] = -maxrange;
if (J[0] > maxrange) J[0] = maxrange;
J[1] = JB[1l] - range/2.0 + RO1()*range;
if (J[1] < -maxrange) J[l] = -maxrange;
if (J[1] > maxrange) J[l] = maxrange;
J[2] = JB[2] - range/2.0 + RO1()*range;
if (J[2] < -maxrange) J[l] = -maxrange;
if (J[2] > maxrange) J[1l] = maxrange;
J[3] = JB[3] - range/2.0 + ROLl()*range;
if (J[3] < -maxrange) J[l] = -maxrange;
if (J[3] > maxrange) J[1l] = maxrange;
J[4] = JB[4] - range/2.0 + RO1()*range;
if (J[4] < -maxrange) J[l] = -maxrange;
if (J[4] > maxrange) J[1l] = maxrange;
J[5] = JB[5] - range/2.0 + ROl ()*range;
if (J[5] < -maxrange) J[l] = -maxrange;
if (J[5] > maxrange) J[1l] = maxrange;

o
// Testing functionality of the cobot to be delivered by CONTRACTOR
int
main (int argc, char* argvl[])
{
// Example of the IP address, where the cobot controller is available
char ipaddress[]="192.168.88.100";

// Generate enough big array of values to store a single motion
float *positions = new float[10000000];
assert (positions);

// Starts the communication with the cobot controller
ConnectCobotCommunication (ipaddress) ;
if (IsMoving (ipaddress)) {
cout << "Stop the cobot at the program start" << endl;
StopCobotMotion (ipaddress) ;
}

// The cobot controller can be in some error state upon startup,

// such as a failure from the last program execution when a cobotic
// arm hit an obstacle during motion

if (IsCobotInErrorState (ipaddress)) {

EUROPEAN UNION
European Structural and Investing Funds
Operational Programme Research,

Development and Education MINISTRY OF EDUCATION,

H AND SPORTS

FAKULTA)
ELEKTROTECHNICKA
CVUTV PRAZE

ReinitiateCobotController (ipaddress) ;
cout << "Warning: the cobot controller had to be reinitiated,"
<< " some error upon startup" << endl;

}

float Jstart[6], TCPstart[6];
// Get the cobot position at start of the application
GetCobotPosition (ipaddress, Jstart);
ConvertJointsToTCP (ipaddress, Jstart, TCPstart);
cout << "Start cobot arm position" << endl;
for (int i=0; 1 < 6; i++) {
cout << "TCP["<<i<k<"]= " << TCPstart[i]
<< "M J["<<Kik«"]= " << Jstart[i] << endl;
}
// kg - example payload 15.0kg
float payloadWeight = 15.0;
// kg.m"2 - example pay load moment of inertia 0.04kg.m"2
float payloadInertia = 0.64;
// m - the distance of payload center of gravity to the center
float payloadDistance = 0.15;
SetWeightMomentOfInertia (ipaddress, payloadWeight,
payloadInertia, payloadDistance);

// Set speed of motion
if (1) |
// Set max speed at joints
float speedJoints = 0.1; // degrees/s
SetSpeedJoints (ipaddress, speedJoints);
}
else {
// Set max speed at TCP and max acceleration and deceleration
float speedTCP = 10; // m/s
float accel = 10; // m/s”2
float decel = 10; // m/s"2
SetSpeedTCP (ipaddress, speedTCP, accel, decel);
}

// randomize the initial position and random generator
if (1) srand(time (NULL)) ;

// Set the initial base pose of the cobotic arm

// and store it to JB[] array describing the joint angles
float JB[6];

SetInitialPose (0, JB);

// How many TCP poses to be used in this test
int N = 1000;

cout << "This is initial position, now press key"
<< endl << flush;
getchar () ;

// Now start the loop with N motion steps
for (int i=0; i < N; i++) {
// Angles at joints
float range = 25; // range in degrees to generate a new motion pose
// A new position of the cobot joints
float J[6];
if ((1%2)==0) {

EUROPEAN UNION

European Structural and Investing Funds

Operational Programme Research,

Development and Education MINISTF

Y OF EDUCATION,

H AND SPORTS

FAKULTA)
ELEKTROTECHNICKA
CVUTV PRAZE

// Move to the initial position, copy the position
for (int j=0; 3 < 6; j++) J[3j] = JIBI[J];
} else {
// Generate a new pose each second time relative to JB
GenerateNewRandomPose (JB, range, J);

if (1) |
// Tool Center Point, position + rotation
float TCP[6];
// Print out the new position
ConvertJointsToTCP (ipaddress, Jstart, TCP);

cout << "i=" << 1 << " move cobot arm position:" << endl;
for (int 1=0; 1 < 6; 1i++) {
cout << "TCP["<<i<<"]= " << TCP[i] << " J["<<i<<"]= " << Jstart[i] << endl;
}
}
if (1) |

// Now compute the planned motion position at required count of time events
int K2=100; // the number of positions to be checked

int N=1; // let us plan only one position here
float timeC[2];
timeC[0]=1.0; // only one
float expectedTime;
int err = SetPositionForTheNextMotion (ipaddress,
N, // how many positions, at least 1
timeC, // event times at these positions
J, // joints setting for the specified times, multiple of 6 values
expectedTime) ;
if (err != 0) {
cout << "ERROR: setting the new cobot pose is wrong code=
<< err << endl;
continue; // go to the next trial
}
cout << "i=" << i << " planning motion OK - expected time for motion is
<< expectedTime << " seconds" << endl;

"

for (int j=0; Jj <= K2; j++) {

// normalized time value in range <0.0, 1.0>

float timeC = (double)j/ (double)K2;

float JT[6], TCP[6];

// Get planned position at joints for the last motion at
// normalized time 'timeC'
GetPlannedPositionForNextMotion (ipaddress, timeC, JT);

// Analyze and exploit the pose data JT[] - user code by

// an application ... to be used for checking collision detection!!
//

it (1) A

// Example - convert the exact joint data to TCP and
// print them to the output
ConvertJointsToTCP (ipaddress, JT, TCP);
for (int k=0; k < 6; k++) {
cout << "j=" << j << "planned J[" << 1 << "]= "
<< JT[1i] << "™ TCP[" << i << "]= " << TCP[i] << endl;

cout << "-mmmmm " << endl;

EUROPEAN UNION

European Structural and Investing Funds

Operational Programme Research,

Development and Education MINISTF

FAKULTA)
ELEKTROTECHNICKA
CVUTV PRAZE

} // for j
y /) e end of analysis for planned motion -----------——---—--

// Get OS real time in miliseconds, real time, at the start
auto tstart = std::chrono::system clock::now();
float eps = 2e-5; // specify in meters the convergence condition
// Now start the movement of a cobot arm to a new pose,
// non-blocking operation
int ret=ExecuteCobotMotion (ipaddress, eps):;
if (ret) {
cout << "ERROR - motion was not started err=" << ret << endl;
continue; // try with another position
}
// Check the position of cobot arm during the motion as frequently as
// possible and store it, there is a lag inaccuracy due to the communication
// via network
int K = 0;
int movingStatus = 0;
// Read as many times as possible during the cobotic arm motion
for(;;) |
// Read the position for this moment of time
auto tt = std::chrono::system clock::now();
float JC[6];
std::chrono::duration<double> elapsed seconds = tt - tstart;
// returns immediate cobot position at joints at this time

int movingStatus = GetCobotPosition (ipaddress, JC);
// store the time and position received from controller
positions[K++] = elapsed seconds.count();

// copy the position to array
for (int j3=0; j<6; J++)

positions[K++] = JC[j];
// Is the cobot at the end position of this pose?
if (movingStatus == 0)

break; // yes, we can finish the loop
if (movingStatus < 0) {
cout << "ERROR: an error occured during the motion from the last pose"

<< endl;
cout << "The error code is " << movingStatus << endl;
break;

}
assert (movingStatus > 0);
// Random stop of motion during the execution, with a low probability
float vrnd = RO1();
const float thresholdStopMotion = 0.01; // probability 0 to 1.0
if (vrnd < thresholdStopMotion) {
// Stop the motion immediately, the emergency stop test during motion
StopCobotMotion (ipaddress) ;
break; // break this loop, cobot does not move any longer

y /) e end of online recording loop ----------——--———-——-—-

// Get time in miliseconds, real time

auto tstop = std::chrono::system clock::now();
std::chrono::duration<double> esTotal = tstop - tstart;
cout << "i=" << i << " ... duration of motion took " << esTotal.count ()

<< " seconds" << endl;
if (movingStatus < 0) {
cout << "WARNING: Trying to remove the error state from the motion"
<< endl;

EUROPEAN UNION

European Structural and Investing Funds

Operational Programme Research,

Development and Education MINISTF

FAKULTA)
ELEKTROTECHNICKA
CVUTV PRAZE

ReinitiateCobotController (ipaddress) ;

}

if (1) |
// Now analyze or/and save the exact data saved during the last
// motion and use them
// the number of positions to be checked as recorded by the controller
int K2 = 100;
for (int j=0;3<=K2;3j++) {
// normalized time value in range <0.0, 1.0>
float timeC = (double)j/ (double)K2;
float JT[6], TCP[6];
// Get exact position at joints for the last motion
// at normalized time 'timeC'
GetExactPositionForLastMotion (ipaddress, timeC, JT);

// RAnalyze and exploit the pose data JT[] - user code
// by an application .. to be used by the customer
if (1) |

// Example - convert the exact joint data to TCP
// and print them to the output
ConvertJointsToTCP (ipaddress, JT, TCP);

for (int k=0; k < 6; k++) {

cout << "j=" << j << "recorded J[" << 1 << "]="
<< JT[1i] << "™ TCP[" << 1 << "]= " << TCP[i] << endl;

}

cout << "-m7rr " << endl;
}
} // for j

Y /) e end of analysis for executed motion ------
} // for 1 —-——=———————- end of main testing loop —-——----——=--———--

// Get the cobot position after it has stopped motion
float Jstop[6], TCPstopl[6];
GetCobotPosition (ipaddress, Jstop);
ConvertJointsToTCP (ipaddress, Jstop, TCPstop);
for (int i=0; 1 < 6; i++) {
cout << "TCP["<<i<<"]= " << TCPstopl[i]
<< "M O J["<<ik<"]= " << Jstop[i] << endl;

}

// Stop the communication with the cobot controller
DisconnectCobotCommunication (ipaddress) ;

return 0; // end of the main program

R
// END OF EXAMPLE USAGE

EUROPEAN UNION
European Structural and Investing Funds
Operational Programme Research,

Development and Education MINISTRY OF EDUCATION,

H AND SPORTS

