

## **GREENFIELD TECHNOLOGY**

1 bis, rue Marcel Paul 91300 MASSY

LOGY d.monnierbourdin@greenfieldtechnology.com

| Date: | June 8, 2021       | To:          | Marcel FRONKO              |
|-------|--------------------|--------------|----------------------------|
| From: | D. Monnier-Bourdin | Company:     | Eli Beams                  |
| Tel:  | +33 6 63 93 41 71  | Email:       | Marcel.fronko@eli-beams.eu |
| Ref.: | PC460 Ed1          | Page Number: | 10                         |

Subject: Technical and financial offer

# **GFT1004: DELAY GENERATOR**

## Services and Prices

This offer is for the supply a Digital Delay Generator model GFT1004. The price for the deliverables is given in the table below. Shipment and VAT are not included in the price.

| Item | Model    | Description                            | Unitary   | Quantity | Total     |
|------|----------|----------------------------------------|-----------|----------|-----------|
|      |          |                                        | Price (€) |          | Price (€) |
| 1    | GFT1004- | 4 Channel Digital Delay Generator with | 9 440,00  | 1        | 9 440,00  |
|      | 1-2-3-7  | following option:                      |           |          |           |
|      |          | • 1: Extension to 8 channels           |           |          |           |
|      |          | • 2: optical input for timing system – |           |          |           |
|      |          | ELI Application                        |           |          |           |
|      |          | • 3: clock output                      |           |          |           |
|      |          | • 7: TTL level channel output          |           |          |           |
|      |          | Supply:                                |           |          |           |
|      |          | - GFT1004                              |           |          |           |
|      |          | - User' manual                         |           |          |           |
|      |          | - Certificate of calibration           |           |          |           |

## <u>Shipment</u>

| Price       | Delivery                               |
|-------------|----------------------------------------|
| 80,00 Euros | ELIBEAMS                               |
|             | Za Radnicí 835 - Dolní Břežany, 252 41 |
|             | Czech Republic                         |

### **Delivery schedule**

| Description | Delivery |
|-------------|----------|
| Item 1      | 8 weeks  |

#### Payment terms

| Payment of total price | Delivery                                  |
|------------------------|-------------------------------------------|
| 100 %                  | At the delivery, 30 days end of the month |

## Time of validity

This quotation is valid two months.

<u>Warranty</u> The product and services delivered by Greenfield Technology, parts, and labour, are guaranteed for one year. The warranty begins on the date the goods are delivered.

D. Monnier-Bourdin Sales manager

## TECHNICAL ANNEX

| GFT1004 delay generator for ELI-Beams application        | .4                                                                                                                                                                                            |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Presentation                                             | .4                                                                                                                                                                                            |
| Functional overview                                      | .4                                                                                                                                                                                            |
| Specifications                                           | .5                                                                                                                                                                                            |
| Mechanical interface                                     | .5                                                                                                                                                                                            |
| Control and Software tools                               | .5                                                                                                                                                                                            |
| Management, documentation                                | . 5                                                                                                                                                                                           |
| GFT1004 - 4 channel digital delay generator / Data sheet | .6                                                                                                                                                                                            |
|                                                          | GFT1004 delay generator for ELI-Beams application<br>Presentation<br>Functional overview<br>Specifications<br>Mechanical interface<br>Control and Software tools<br>Management, documentation |

## 1. GFT1004 delay generator for ELI-Beams application

## Presentation

Greenfield Technology has developed high precision timing systems for 20 years.

The one presented here has been customized to fulfill Eli Beams Application (LLNL/HALPS requirements). One of the major system specifications is the Master Timing Generator (MTG) phase locked specification to the 80MHz external clock with an rms jitter from clock to optical data stream less than 10ps.

The primary function of the Delay Generators is the generation of precision trigger pulses based on user settable delays and data control keys received from the MTG via an optically transmitted serial data stream. Data control keys include epochs and single shot events that control timing of the laser system.

## Functional overview

**Block diagram**: The GFT1004 includes the five following functions: Time base, Trigger controller, Delay Channels, Channel Output and Interface controller.



**<u>Time Base</u>**: This function provides a 160 MHz time base from an internal reference or recovered from the optical input.

## Trigger Controller:

This function provides several trigger sources to each delay channel

- One external trigger source: When the external trigger source is selected, a rising edge on "TRIG IN" starts a delay sequence. After each channel's delay period, a pulse appears on each channel's output
- Two internal trigger sources from two synchronous timers. The frequency of each timer is programmable from 1 Hz to 100 kHz
- Data control keys recovered from the optical input. Optical trigger sources are operated in conjunction with a GFT3001 Master Timing Generator that controls a number of GFT1004. The GFT3001 provides an optical serial data stream for time base synchronization to the multiple GFT1004 units. This serial data stream is composed of single-shot, repetitive trigger, and inhibition key trigger sources. GFT1004 devices can be located at distance greater than 1 km from the GFT3001 Master Timing Generator.

**Delay Channel:** They are 4/8/10 independent delay channels. The delay from the selected trigger source is programmable up to 10 seconds in 1 ps increments.

T0 output channel is used as a time reference (delay = 0) for all delayed output pulses.

<u>Channel Output:</u> Each delayed output pulse can be independently adjusted in level (2.5 to 6 V) and width. The outputs are designed to drive a 50  $\Omega$  load.

**Interface Controller:** It manages internal functions and user interfaces. The parameters can be locally controlled over the front panel keys, and remotely displayed and controlled via Ethernet (10/100 Mb/s) or Internet (web page from internal web server)

All parameter values (delay, level, width) are automatically saved.

## Specifications

- Time base: 160 MHz
- Inhibition input: without
- Clk input: without
- Optical Timing system mode for Eli Beams Applications: 80MHz synchronized data stream composed of 6 Epochs, 4 single shot keys and one inhibition key

Other specifications are the same as the ones given in the GFT1004 data sheet with option 1, 2, 3, and 7.

Mechanical interface

Same as a standard GFT1004.

Greenfield add on a rear panel a sticker. Sticker indicates:

Optical Timing system mode for Eli Beams Application Without inhibition input and clock input

## Control and Software tools

Greenfield Technology will program a specific embedded software:

- FPGA: 1.0
- Interface controller: 3.0.9

#### Management, documentation

Greenfield Technology has not includes a meeting with Eli Beams for this Technical and Financial offer.

Documentations provided:

- GFT1004 user manual for Eli Application, ref NUT065
- Test report

## 2. GFT1004 - 4 channel digital delay generator / Data sheet



#### Features

- Four Independent Delay Channels (up to ten in option) 1 ps Time Resolution
  - <10 ps Jitter for Internal Triggered Delays
  - <25 ps Jitter for External Triggered Delays
- Adjustable Output Pulse up to 10 V, 1 ns Rise Time
- External or Internal Trigger Sources for Every Channel
- External or Internal Ingger Sources for Every Channel Internal or External Clocking up to 90 MHz Independent Control of Delay, Width, and Amplitude Controlled via Ethernet, Web Page and Front Panel
- Compact Packaging 1U, 19'
  - Options: Extension to 8 or 10 Channels Output pulse: TTL, 20 V, 32 V, or Optical

#### Applications

- Components Test
- Automated Test Equipment (ATE)
- System Laser Timing Control
- Control Flash Lamps and Q-
- switches
- Synchronization with selectable clock frequency - Mode Locked Laser
- Precision Pulse Application
- Gate High-Speed Cameras
- Instrument Triggering



## Description

The GTF1004 Digital Delay Generator provides four independently delayed pulses on the rear panel with options for eight or ten channels. Delays up to 10 seconds can be programmed with 1 ps resolution, and channel-to-channel jitter is less than 10 ps RMS. BNC outputs deliver up to 10 V, 1 ns under 50 Ω. Pulse amplitude and width are adjustable on each output channel.

One input channel, or two internal synchronized timers are used to trigger all output channels. One T0 channel is used as a time reference for all of the delayed output pulses.

The GFT1004 is a Digital Delay Generator that operates either as a standalone device, or as a component in a timing system (Option 2). In a timing system (see below), the GFT1004 is operated in conjunction with a GFT3001 Master Transmitter that controls and synchronizes a number of GFT1004 DDGs via optical fibers.

GFT1004 parameters can be locally controlled over the front panel keys and LCD display, and remotely controlled via Ethernet (10/100 Mb/s) or Internet (web page from internal web server).



Timing System Application with 3 Slave Generators (24 delay Channels)

V08/19

www.greenfieldtechnology.com 1 bis, rue Marcel Paul - 91300 Massy - FRANCE



GFT1004

**4 Channel Digital Delay Generator** 

## Specifications

| Number       4 independent         Range       0 to 10 seconds         Resolution       1 ps         RMS Jitter       < 10 ps + delay x 10 <sup>7</sup> (external trigger to any channel)         < 2 5 ps + delay x 10 <sup>7</sup> (external trigger to any channel)         Accuracy       < 150 ps + delay x 10 <sup>7</sup> (external trigger to any channel)         Accuracy       < 150 ps + delay x 10 <sup>7</sup> (external trigger to any channel)         Repetition Rate       Up to 100 kHz or single-shot         Trigger Level       +1 V / 50 Ω         Slope       Positive         Minimum Trigger Delay       < 100 ns (insertion delay)         Connector       BNC         Internal Trigger       Frequency = 1 Hz to 100 kHz, resolution = 6.43 ns         Output Pulse T0       Amplitude / Width         Amplitude / Width       2.5 to 10 V / 100 ns to 10 ms under 50 Ω         Output Pulse T1 to T4       Amplitude         Amplitude       2.5 V to 10 V in steps of 10 mV         Load       50 Ω         Rise/Fall Time       < 1 ns / 3 ns         Width       100 ns to 10 ms in steps of 6.43 ns         Connector       BNC         External Time Reference       Threshold         Threshold       0 V, internal 50 Ω         Level       Min -3 dBm, typi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Delay Channe   | l                                                  |                                                                                        |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|
| Range0 to 10 secondsResolution1 psRMS Jitter< 10 ps + delay x 10° (channel-to-channel in internal trigger)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Number         |                                                    | 4 independent                                                                          |  |  |  |
| Resolution       1 ps         RMS Jitter       < 10 ps + delay x 10-7 (channel-to-channel in internal trigger)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Range          |                                                    | 0 to 10 seconds                                                                        |  |  |  |
| RMS Jitter< 10 ps + delay x 10.7 (channel-to-channel in internal trigger)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Resolutio      | n                                                  | 1 ps                                                                                   |  |  |  |
| $< 25 \text{ ps} + \text{delay x } 10^7 (\text{external trigger to any channel)} < 10 \text{ ps} + \text{delay x } 10^7 (\text{external trigger to any channel)} < 15 \text{ ps} + \text{delay x } 10^7 (\text{external trine reference to any channel)} < 15 \text{ ps} + \text{delay x } 10^7 (\text{external tring erference to any channel)} < 15 \text{ ps} + \text{delay x } 10^7 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RMS Jitte      | r                                                  | $< 10 \text{ ps} + \text{delay x } 10^{-7}$ (channel-to-channel in internal trigger)   |  |  |  |
| $< 10 \text{ ps} + \text{delay x } 10^{-7} \text{ (external time reference to any channel)} Accuracy < 150 \text{ ps} + \text{delay x } 10^{-7} \text{ (external time reference to any channel)} Time Base 155.52 MHz frequency, 0.5 ppm stability External Trigger Input Repetition Rate Up to 100 kHz or single-shot Trigger Level +1 V / 50 Ω Slope Positive Minimum Trigger Delay < 100 ns (insertion delay) Connector BNC Internal Trigger Two Synchronized Timers Frequency = 1 Hz to 100 kHz, resolution = 6.43 ns Output Pulse T0 Amplitude / Width 2.5 to 10 V / 100 ns to 10 ms under 50 Ω Output Pulse T1 Amplitude 2.5 V to 10 V in steps of 10 mV Load 50 Ω Rise/Fall Time < 1 ns / 3 ns Width 100 ns to 10 ms in steps of 6.43 ns Connector BNC External Time Reference Threshold 0 V, internal 50 Ω Level Min -3 dBm, typical 0 dBm Frequency 10 MHz (other frequencies are available up to 90 MHz) Inibibition Input Active high, Threshold = 1.5 V, Repetition rate < 100 kHz Command Each trigger Channel can be Inhibited General Software Free Drivers for Windows 7 / 10, VI LabView driver User Interface Front panel, Ethernet 10/100 Mb/s, Internet (web page) Power Consumption 90 to 240 V / 50 - 60 Hz/ 0.25 A Weight / Size < 5 kg / 19'' W X 363 mm D X 10 H Option 3: Optical input for timing system mode Option 1: Extension to 8 channels Option 1: Extension to 8 channels Option 5 D Colck output (sine wave, 3 dBm, -40 dBm spectral purity, 77.76 MHz frequency, 5 ps RMS jitter to any channel) Option 5: Extension to 10 channels Option 6: 5 V to 20 V channel output (Width = 0.1 to 10 µs, rise/fall time = 3/15 ns under 50 Ω) Option 7: TL level (2.5 to 6 V) channel output (Width = 10 ns to 10 s, rise/fall time = 5/15 ns under 50 Q, positive regative pulse) Option 9: 100 ps delay channel output (Width = 0.1 to 10 µs, rise/fall time = 5/15 ns under 50 Q, positive regative pulse) Option 9: 100 ps delay channel output (Width = 0.1 to 10 µs, rise/fall time = 3/15 ns under 50 Ω) Option 9: 100 ps delay channel output (Width = 0$ |                |                                                    | $< 25 \text{ ps} + \text{delay x } 10^{-7}$ (external trigger to any channel)          |  |  |  |
| Accuracy< 150 ps + delay x 10 $^2$ Time Base155.52 MHz frequency, 0.5 ppm stabilityExternal Trigger InputRepetition RateUp to 100 kHz or single-shotTrigger Level+1.V / 50 $\Omega$ SlopePositiveMinimum Trigger Delay< 100 ns (insertion delay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                                    | $< 10 \text{ ps} + \text{delay x } 10^{-7}$ (external time reference to any channel)   |  |  |  |
| Time Base       155.52 MHz frequency, 0.5 ppm stability         External Trigger Input       Repetition Rate       Up to 100 kHz or single-shot         Trigger Level       +1 V / 50 Ω         Slope       Positive         Minimum Trigger Delay       < 100 ns (insertion delay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Accuracy       |                                                    | < 150 ps + delay x 10 <sup>-7</sup>                                                    |  |  |  |
| External Trigger InputUp to 100 kHz or single-shotRepetition RateUp to 100 kHz or single-shotTrigger Level $+1 V / 50 \Omega$ SlopePositiveMinimum Trigger Delay< 100 ns (insertion delay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time Bas       | e                                                  | 155.52 MHz frequency, 0.5 ppm stability                                                |  |  |  |
| Repetition RateUp to 100 kHz or single-shotTrigger Level $+1 V / 50 \Omega$ SlopePositiveMinimum Trigger Delay< 100 ns (insertion delay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | External Trigo | jer Input                                          |                                                                                        |  |  |  |
| Trigger Level $+1$ V / 50 $\Omega$ SlopePositiveMinimum Trigger Delay< 100 ns (insertion delay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Repetition     | n Rate                                             | Up to 100 kHz or single-shot                                                           |  |  |  |
| Slöpe       Positive         Minimum Trigger Delay       < 100 ns (insertion delay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Triager Le     | evel                                               | +1 V / 50 Ω                                                                            |  |  |  |
| Minimum Trigger Delay       < 100 ns (insertion delay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Slope          |                                                    | Positive                                                                               |  |  |  |
| ConnectorBNCInternal TriggerFrequency = 1 Hz to 100 kHz, resolution = 6.43 nsOutput Pulse T0Amplitude / WidthAmplitude / Width2.5 to 10 V / 100 ns to 10 ms under 50 $\Omega$ Output Pulse T1 to T4Amplitude2.5 V to 10 V in steps of 10 mVLoad50 $\Omega$ Rise/Fall Time< 1 ns / 3 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minimum        | Trigger Delay                                      | < 100 ns (insertion delay)                                                             |  |  |  |
| Internal TriggerTwo Synchronized TimersFrequency = 1 Hz to 100 kHz, resolution = 6.43 nsOutput Pulse T0Amplitude / Width2.5 to 10 V / 100 ns to 10 ms under 50 $\Omega$ Output Pulse T1 to T4Amplitude / User T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Connector      |                                                    | BNC                                                                                    |  |  |  |
| Two Synchronized TimersFrequency = 1 Hz to 100 kHz, resolution = 6.43 nsOutput Pulse T0Amplitude / Width2.5 to 10 V / 100 ns to 10 ms under 50 ΩOutput Pulse T1 to T4Amplitude2.5 V to 10 V in steps of 10 mVLoad50 ΩRise/Fall Time< 1 ns / 3 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Internal Trigo | ier                                                |                                                                                        |  |  |  |
| Output Puise T0Amplitude / Width2.5 to 10 V / 100 ns to 10 ms under 50 $\Omega$ Output Puise T1 to T4Amplitude2.5 V to 10 V in steps of 10 mVLoad50 $\Omega$ Rise/Fall Time< 1 ns / 3 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Two Sync       | hronized Timers                                    | Frequency = 1 Hz to 100 kHz, resolution = $6.43$ ns                                    |  |  |  |
| Amplitude /Width2.5 to 10 V / 100 ns to 10 ms under 50 ΩOutput Pulse T1 to T4Amplitude2.5 V to 10 V in steps of 10 mVLoad50 ΩRise/Fall Time< 1 ns / 3 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Output Pulse   | то                                                 |                                                                                        |  |  |  |
| Output Puise T1 to T4Amplitude2.5 V to 10 V in steps of 10 mVLoad50 $\Omega$ Rise/Fall Time< 1 ns / 3 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Amplitude      | e / Width                                          | 2.5 to 10 V / 100 ns to 10 ms under 50 Q                                               |  |  |  |
| Amplitude2.5 V to 10 V in steps of 10 mVLoad $50 \ \Omega$ Rise/Fall Time $< 1 \text{ ns} / 3 \text{ ns}$ Width100 ns to 10 ms in steps of 6.43 nsConnectorBNCExternal Time ReferenceThreshold0 V, internal $50 \ \Omega$ LevelMin -3 dBm, typical 0 dBmFrequency10 MHz (other frequencies are available up to 90 MHz)InhibitionInputActive high, Threshold = 1.5 V, Repetition rate < 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Output Pulse   | T1 to T4                                           |                                                                                        |  |  |  |
| LoadSo ΩLoadSo ΩRise/Fall Time< 1 ns / 3 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Amplitude      | 2                                                  | 2.5 V to 10 V in steps of 10 mV                                                        |  |  |  |
| LocalJointRise/Fall Time< 1 ns / 3 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Load           | <b>3</b> 9                                         | 50.0                                                                                   |  |  |  |
| NumberNumberWidth100 ns to 10 ms in steps of 6.43 nsConnectorBNCExternal Time ReferenceThreshold0 V, internal 50 $\Omega$ LevelMin -3 dBm, typical 0 dBmFrequency10 MHz (other frequencies are available up to 90 MHz)InhibitionInputActive high, Threshold = 1.5 V, Repetition rate < 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rise/Fall      | Time                                               | < 1 ns / 3 ns                                                                          |  |  |  |
| WidthToo is to 10 ms in steps of 0.45 msConnectorBNCExternal Time ReferenceThreshold0 V, internal 50 $\Omega$ LevelMin -3 dBm, typical 0 dBmFrequency10 MHz (other frequencies are available up to 90 MHz)InhibitionInputActive high, Threshold = 1.5 V, Repetition rate < 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Width          |                                                    | 100  ns to  10  ms in stens of  6.43  ns                                               |  |  |  |
| External Time ReferenceThreshold0 V, internal 50 ΩLevelMin -3 dBm, typical 0 dBmFrequency10 MHz (other frequencies are available up to 90 MHz)InhibitionInputActive high, Threshold = 1.5 V, Repetition rate < 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Copportor      |                                                    |                                                                                        |  |  |  |
| Threshold0 V, internal 50 $\Omega$ LevelMin -3 dBm, typical 0 dBmFrequency10 MHz (other frequencies are available up to 90 MHz)InhibitionInputActive high, Threshold = 1.5 V, Repetition rate < 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | External Time  | Reference                                          | bite                                                                                   |  |  |  |
| Level       Min -3 dBm, typical 0 dBm         Frequency       10 MHz (other frequencies are available up to 90 MHz)         Inhibition       Input         Active high, Threshold = 1.5 V, Repetition rate < 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Threshold      |                                                    | 0 V internal 50 Q                                                                      |  |  |  |
| Frequency       10 MHz (other frequencies are available up to 90 MHz)         Inhibition       Input         Input       Active high, Threshold = 1.5 V, Repetition rate < 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                    | Min -3 dBm_typical 0 dBm                                                               |  |  |  |
| InhibitionInputActive high, Threshold = 1.5 V, Repetition rate < 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Erequenci      | N/                                                 | 10 MHz (other frequencies are available up to 90 MHz)                                  |  |  |  |
| ImputActive high, Threshold = 1.5 V, Repetition rate < 100 kHzCommandEach trigger Channel can be InhibitedGeneralSoftwareSoftwareFree Drivers for Windows 7 / 10, VI LabView driverUser InterfaceFront panel, Ethernet 10/100 Mb/s, Internet (web page)Power Consumption90 to 240 V / 50 - 60 Hz/ 0.25 AWeight / Size< 5 kg / 19" W X 363 mm D X 10 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Inhibition     | у                                                  |                                                                                        |  |  |  |
| InputRective high, mitsand = 1.5 V, Repetition rate < 100 km²CommandEach trigger Channel can be InhibitedGeneralSoftwareFree Drivers for Windows 7 / 10, VI LabView driverUser InterfaceFront panel, Ethernet 10/100 Mb/s, Internet (web page)Power Consumption90 to 240 V / 50 - 60 Hz/ 0.25 AWeight / Size< 5 kg / 19" W X 363 mm D X 10 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Input          |                                                    | Active high Threshold = $1.5$ V. Repetition rate < $100$ kHz                           |  |  |  |
| Contracting of chainer can be ministedGeneralSoftwareFree Drivers for Windows 7 / 10, VI LabView driverUser InterfaceFront panel, Ethernet 10/100 Mb/s, Internet (web page)Power Consumption90 to 240 V / 50 - 60 Hz/ 0.25 AWeight / Size< 5 kg / 19" W X 363 mm D X 10 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Command        | 9                                                  | Each trigger Channel can be Inhibited                                                  |  |  |  |
| SeriesSoftwareFree Drivers for Windows 7 / 10, VI LabView driverUser InterfaceFront panel, Ethernet 10/100 Mb/s, Internet (web page)Power Consumption90 to 240 V / 50 - 60 Hz/ 0.25 AWeight / Size< 5 kg / 19" W X 363 mm D X 1U H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ceneral        | X                                                  |                                                                                        |  |  |  |
| SoftwareFree Drivers for Windows // 10, VI Labytew driverUser InterfaceFront panel, Ethernet 10/100 Mb/s, Internet (web page)Power Consumption90 to 240 V / 50 - 60 Hz/ 0.25 AWeight / Size< 5 kg / 19" W X 363 mm D X 1U H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Software       |                                                    | Free Drivers for Windows 7 (10 )/LLabView driver                                       |  |  |  |
| Oser interfaceFront panel, Ethernet 10/100 Mb/s, interfact (web page)Power Consumption90 to 240 V / 50 - 60 Hz/ 0.25 AWeight / Size< 5 kg / 19" W X 363 mm D X 1U HOptionsOption 1:Extension to 8 channelsOption 2:Optical input for timing system modeOption 3:Clock output (sine wave, 3 dBm, -40 dBm spectral purity, 77.76 MHz frequency, 5 ps<br>RMS jitter to any channel)Option 4:32 V channel output (Width = 1 µs, rise/fall time = 3/15 ns under 50 $\Omega$ )Option 5:Extension to 10 channelsOption 6:5 V to 20 V channel output (Width = 0.1 to 10 µs, rise/fall time = 3/15 ns under 50 $\Omega$ )Option 7:TTL level (2.5 to 6 V) channel output (Width=100 ns to 10 s, rise/fall time = 5/15 ns<br>under 50 $\Omega$ , positive or negative pulse)Option 8:Optical channel output >250 µW (wavelength = 850 nm, width = 0.1 to 10 µs, rise/fall<br>time = 1/2 ns, ST connector)Option 9:100 ps delay channel resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | User Inte      | rface                                              | Front papel. Ethernet 10/100 Mb/c. Internet (web page)                                 |  |  |  |
| Note 240 V / 30 - 00 H2 / 0.25 AWeight / Size < 5 kg / 19" W X 363 mm D X 1U HOptionsOption 1: Extension to 8 channelsOption 2: Optical input for timing system modeOption 3: Clock output (sine wave, 3 dBm, -40 dBm spectral purity, 77.76 MHz frequency, 5 ps<br>RMS jitter to any channel)Option 4: 32 V channel output (Width = 1 $\mu$ s, rise/fall time = 3/15 ns under 50 $\Omega$ )Option 5: Extension to 10 channelsOption 6: 5 V to 20 V channel output (Width = 0.1 to 10 $\mu$ s, rise/fall time = 3/15 ns under 50 $\Omega$ )Option 7: TTL level (2.5 to 6 V) channel output (Width=100 ns to 10 s, rise/fall time = 5/15 ns<br>under 50 $\Omega$ , positive or negative pulse)Option 8: Optical channel output >250 $\mu$ W (wavelength = 850 nm, width = 0.1 to 10 $\mu$ s, rise/fall<br>time = 1/2 ns, ST connector)Option 9: 100 ps delay channel resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bowor Co       | nace                                               | $-90 \pm 0.240 \text{ V} / 50 = 60 \text{ Hz} / 0.25 \text{ A}$                        |  |  |  |
| OptionsOption 1:Extension to 8 channelsOption 2:Optical input for timing system modeOption 3:Clock output (sine wave, 3 dBm, -40 dBm spectral purity, 77.76 MHz frequency, 5 ps<br>RMS jitter to any channel)Option 4:Option 5:Extension to 10 channelsOption 6:5 V to 20 V channel output (Width = 0.1 to 10 µs, rise/fall time = 3/15 ns under 50 $\Omega$ )Option 7:TTL level (2.5 to 6 V) channel output (Width=100 ns to 10 s, rise/fall time = 5/15 ns<br>under 50 $\Omega$ , positive or negative pulse)Option 8:Option 9:Option 9:100 ps delay channel resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Woight /       | Sizo                                               | < 5 kg / 10" W X 363 mm D X 111 H                                                      |  |  |  |
| Options         Option 1:       Extension to 8 channels         Option 2:       Optical input for timing system mode         Option 3:       Clock output (sine wave, 3 dBm, -40 dBm spectral purity, 77.76 MHz frequency, 5 ps<br>RMS jitter to any channel)         Option 4:       32 V channel output (Width = 1 µs, rise/fall time = 3/15 ns under 50 Ω)         Option 5:       Extension to 10 channels         Option 6:       5 V to 20 V channel output (Width = 0.1 to 10 µs, rise/fall time = 3/15 ns under 50 Ω)         Option 7:       TTL level (2.5 to 6 V) channel output (Width=100 ns to 10 s, rise/fall time = 5/15 ns<br>under 50 Ω, positive or negative pulse)         Option 8:       Optical channel output >250 µW (wavelength = 850 nm, width = 0.1 to 10 µs, rise/fall<br>time = 1/2 ns, ST connector)         Option 9:       100 ps delay channel resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ontions        | 5120                                               |                                                                                        |  |  |  |
| Option 1:       Extension to 0 chainers         Option 2:       Optical input for timing system mode         Option 3:       Clock output (sine wave, 3 dBm, -40 dBm spectral purity, 77.76 MHz frequency, 5 ps RMS jitter to any channel)         Option 4:       32 V channel output (Width = 1 µs, rise/fall time = 3/15 ns under 50 Ω)         Option 5:       Extension to 10 channels         Option 6:       5 V to 20 V channel output (Width = 0.1 to 10 µs, rise/fall time = 3/15 ns under 50 Ω)         Option 7:       TTL level (2.5 to 6 V) channel output (Width=100 ns to 10 s, rise/fall time = 5/15 ns under 50 Ω, positive or negative pulse)         Option 8:       Optical channel output >250 µW (wavelength = 850 nm, width = 0.1 to 10 µs, rise/fall time = 1/2 ns, ST connector)         Option 9:       100 ps delay channel resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Option 1:      | Extension to 8 channe                              |                                                                                        |  |  |  |
| <ul> <li>Option 2: Optical input for timing system mode</li> <li>Option 3: Clock output (sine wave, 3 dBm, -40 dBm spectral purity, 77.76 MHz frequency, 5 ps RMS jitter to any channel)</li> <li>Option 4: 32 V channel output (Width = 1 μs, rise/fall time = 3/15 ns under 50 Ω)</li> <li>Option 5: Extension to 10 channels</li> <li>Option 6: 5 V to 20 V channel output (Width = 0.1 to 10 μs, rise/fall time = 3/15 ns under 50 Ω)</li> <li>Option 7: TTL level (2.5 to 6 V) channel output (Width=100 ns to 10 s, rise/fall time = 5/15 ns under 50 Ω, positive or negative pulse)</li> <li>Option 8: Optical channel output &gt;250 μW (wavelength = 850 nm, width = 0.1 to 10 μs, rise/fall time = 1/2 ns, ST connector)</li> <li>Option 9: 100 ps delay channel resolution</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Option 2:      | Optical input for timir                            | els                                                                                    |  |  |  |
| Option 5:       Channel output (Width = 1 μs, rise/fall time = 3/15 ns under 50 Ω)         Option 4:       32 V channel output (Width = 1 μs, rise/fall time = 3/15 ns under 50 Ω)         Option 5:       Extension to 10 channels         Option 6:       5 V to 20 V channel output (Width = 0.1 to 10 μs, rise/fall time = 3/15 ns under 50 Ω)         Option 7:       TTL level (2.5 to 6 V) channel output (Width=100 ns to 10 s, rise/fall time = 5/15 ns under 50 Ω, positive or negative pulse)         Option 8:       Optical channel output >250 μW (wavelength = 850 nm, width = 0.1 to 10 μs, rise/fall time = 1/2 ns, ST connector)         Option 9:       100 ps delay channel resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Option 2:      | 2: Optical input for timing system mode            |                                                                                        |  |  |  |
| Option 4: 32 V channel output (Width = 1 μs, rise/fall time = 3/15 ns under 50 Ω)         Option 5: Extension to 10 channels         Option 6: 5 V to 20 V channel output (Width = 0.1 to 10 μs, rise/fall time = 3/15 ns under 50 Ω)         Option 7: TTL level (2.5 to 6 V) channel output (Width=100 ns to 10 s, rise/fall time = 5/15 ns under 50 Ω, positive or negative pulse)         Option 8: Optical channel output >250 μW (wavelength = 850 nm, width = 0.1 to 10 μs, rise/fall time = 1/2 ns, ST connector)         Option 9: 100 ps delay channel resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | RMS jitter to any chai                             | nnel)                                                                                  |  |  |  |
| Option 5: Extension to 10 channels         Option 6: 5 V to 20 V channel output (Width = 0.1 to 10 µs, rise/fall time = 3/15 ns under 50 Ω)         Option 7: TTL level (2.5 to 6 V) channel output (Width=100 ns to 10 s, rise/fall time = 5/15 ns under 50 Ω, positive or negative pulse)         Option 8: Optical channel output >250 µW (wavelength = 850 nm, width = 0.1 to 10 µs, rise/fall time = 1/2 ns, ST connector)         Option 9: 100 ps delay channel resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Option 4:      | 32 V channel output (                              | (Width = 1 $\mu$ s, rise/fall time = 3/15 ns under 50 $\Omega$ )                       |  |  |  |
| Option 6: 5 V to 20 V channel output (Width = 0.1 to 10 µs, rise/fall time = 3/15 ns under 50 Ω)         Option 7: TTL level (2.5 to 6 V) channel output (Width=100 ns to 10 s, rise/fall time = 5/15 ns under 50 Ω, positive or negative pulse)         Option 8: Optical channel output >250 µW (wavelength = 850 nm, width = 0.1 to 10 µs, rise/fall time = 1/2 ns, ST connector)         Option 9: 100 ps delay channel resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Option 5:      | Extension to 10 chan                               | nels                                                                                   |  |  |  |
| Option 7: TTL level (2.5 to 6 V) channel output (Width=100 ns to 10 s, rise/fall time = 5/15 ns under 50 Ω, positive or negative pulse)         Option 8: Optical channel output >250 µW (wavelength = 850 nm, width = 0.1 to 10 µs, rise/fall time = 1/2 ns, ST connector)         Option 9: 100 ps delay channel resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Option 6:      | 5 V to 20 V channel o                              | putput (Width = 0.1 to 10 $\mu$ s, rise/fall time = 3/15 ns under 50 $\Omega$ )        |  |  |  |
| Option 8: Optical channel output >250 μW (wavelength = 850 nm, width = 0.1 to 10 μs, rise/fall<br>time = 1/2 ns, ST connector)<br>Option 9: 100 ps delay channel resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Option 7:      | TTL level (2.5 to 6 V under 50 $\Omega$ , positive | ) channel output (Width=100 ns to 10 s, rise/fall time = 5/15 ns<br>or negative pulse) |  |  |  |
| Option 9: 100 ps delay channel resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Option 8:      | Optical channel output time = $1/2$ ns. ST cor     | ut >250 μW (wavelength = 850 nm, width = 0.1 to 10 μs, rise/fall nnector)              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Option 9:      | 100 ps delay channel                               | resolution                                                                             |  |  |  |

V08/19

www.greenfieldtechnology.com 1 bis, rue Marcel Paul – 91300 Massy – FRANCE



## GFT1004 4 Channel Digital Delay Generator

## **Functional Overview**

<u>Block Diagram:</u> The GFT1004 includes the five following functions: Time Base, Trigger Controller, Digital Delay Channel, Channel Output and Interface Controller.



Block diagram of the delay generator

<u>Time Base</u>: This function provides a 155.52 MHz time base from an internal reference or an external 10 MHz reference. As an option, the external reference can be up to 90 MHz (Ask to factory).

#### Trigger Controller:

This function provides 4 trigger sources to each delay channel

- External trigger source: When the external trigger source is selected, a rising edge on "TRIG IN" starts a delay sequence. After each channel's delay period, a pulse appears on each channel's output
- There are two internal trigger sources from two synchronous Timers. The frequency of each Timer is programmable from 1 Hz to 100 kHz
- Optical trigger source (as an option) is operated in conjunction with a GFT3001 Master Transmitter that controls a number of GFT1004. Via optical fiber, the GFT3001 provides a serial data stream for time base synchronization, single-shot, repetitive triggers, and inhibition information to the multiple GFT1004 units at distance greater than 1 km from the GFT3001 Master Transmitter.
   "Inhibition input" allows the system to quickly inhibit selected outputs.

**Delay Channel:** They are 4 independent delay channels (with options for eight or ten channels). The delay from the selected trigger source is programmable up to 10 seconds in 1 ps increments.

"T0" output channel is used as a time reference (delay = 0) for all delayed output pulses. Channel Output: Each delayed output pulse (T1 to T10) can be independently adjusted in level and

width. The outputs are designed to drive a 50  $\Omega$  load.

As an option, channel output level can be 2.5 to 6 V, or 5 to 20 V, or fixed 32 V, or optical pulse.

**Interface Controller:** It manages internal functions and user interfaces. The parameters can be locally controlled over the front panel keys, and remotely controlled via Ethernet (10/100 Mb/s) or Internet (web page from internal web server) All parameter values are automatically saved. **Example of channel output mode** 



V08/19

www.greenfieldtechnology.com 1 bis, rue Marcel Paul – 91300 Massy – FRANCE



#### **Control and Software Tools**

They are three ways to control the generator: - <u>"local way"</u> via the front Panel Display an Key board



Display example: Settings of Channel T1

"<u>Ouick remote way"</u> via Internet and control panel web pages. Web page, from embedded Web server, provides a simple method to configure settings for each channel (delay, output amplitude, polarity, output width, trigger mode, trigger source), to control operation and to display the status of the instrument.

The configuration information of the instrument is stored and saved in the GFT1004.

The web page can be opened via Internet Explorer, Mozilla Firefox or Chrome.

After connecting a cable from the GFT1004's Ethernet port to your computer network, enter the GFT1004's IP address into your PC's browser (the IP address can be identified or assigned via the front panel). The browser will automatically open the control panel web page on your PC.

| TRIG - F0 - | and a summary little of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - manufactures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | widu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>1</b> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | SS2 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1200 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TRIG . F1   | SS1 TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TRIG - F0   | SS1 TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • 🔳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200000 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1100 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SEQ - FO    | SS2 TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300000 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | os 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1200 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TRIG - F5   | SS1 TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 🔳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | os 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TRIG F5     | SS1 TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TRIG F5     | SS1 TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 🔤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | us 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TRIG - F5   | SS1 TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | os 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TRIG - F5   | SS1 TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 🔟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | as 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TRIG • F5   | SS1 TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • 🔟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | os 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TRIG F0     | SS1 TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| UENCIES     | MONITORI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2           | +6V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.91 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Popt -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .44 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ower supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>Z</b> () | -6V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -6.04 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Temp 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reception                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | TRIG         F0           SEO         F0           TRIG         F5           TRIG         F5 </td <td>TRIG         F0         SS1         T0           SEG         F0         SS2         T0           TRIG         F5         SS1         T0           TRIG         F0         SS1         T0           TRIG         F0         SS1         T0           CUENCIES         MONITORI         46V         47</td> <td>TRIG         FØ         SST         TO         Ø           SE0         FØ         SS2         TO         Ø           TRIG         F5         SS1         TO         Ø           TRIG         F0         SS1         TO         Ø           TRIG         F0         SS1         TO         Ø           QUENCIES         MONITORING         Ø         S01         Ø</td> <td>TRIC         F0         SSI         T0         20000           SE0         F0         SS2         T0         300000           TRIC         F5         SSI         T0         0         0           TRIC         F0         SSI         T0         0         0           TRIC         F0         SSI         T0         0         0         0           TRIC         F0         SSI         T0         0         0         0           QUENCIES         MONITORING         0         0         0         0         0</td> <td>TRIG         F0         SSI         T0         B         200000         ps         2500           SE0         F0         SS2         T0         B         300000         ps         2500           TRIG         F5         SS1         T0         B         0         ps         5000           TRIG         F0         SS1         T0         B         0         ps         5000           TRIG         F0         SS1         T0         B         0         ps         2500</td> <td>TRIG         F0         SS1         T0         200000         ps         2500         mV           SE0         F0         SS2         T0         200         mV         300000         ps         2500         mV           TRIG         F5         SS1         T0         2         0         ps         5500         mV           TRIG         F5         SS1         T0         2         0         ps         5500         mV           TRIG         F5         SS1         T0         2         0         ps         5000         mV           TRIG         F5         SS1         T0         2         0         ps         5000         mV           TRIG         F5         SS1         T0         2         0         ps         5000         mV           TRIG         F5         SS1         T0         2         0         ps         5000         mV           TRIG         F0         SS1         T0         2         0         ps         2500         mV           TRIG         F0         SS1         T0         2         0         ps         2500         mV</td> | TRIG         F0         SS1         T0           SEG         F0         SS2         T0           TRIG         F5         SS1         T0           TRIG         F0         SS1         T0           TRIG         F0         SS1         T0           CUENCIES         MONITORI         46V         47 | TRIG         FØ         SST         TO         Ø           SE0         FØ         SS2         TO         Ø           TRIG         F5         SS1         TO         Ø           TRIG         F0         SS1         TO         Ø           TRIG         F0         SS1         TO         Ø           QUENCIES         MONITORING         Ø         S01         Ø | TRIC         F0         SSI         T0         20000           SE0         F0         SS2         T0         300000           TRIC         F5         SSI         T0         0         0           TRIC         F0         SSI         T0         0         0           TRIC         F0         SSI         T0         0         0         0           TRIC         F0         SSI         T0         0         0         0           QUENCIES         MONITORING         0         0         0         0         0 | TRIG         F0         SSI         T0         B         200000         ps         2500           SE0         F0         SS2         T0         B         300000         ps         2500           TRIG         F5         SS1         T0         B         0         ps         5000           TRIG         F0         SS1         T0         B         0         ps         5000           TRIG         F0         SS1         T0         B         0         ps         2500 | TRIG         F0         SS1         T0         200000         ps         2500         mV           SE0         F0         SS2         T0         200         mV         300000         ps         2500         mV           TRIG         F5         SS1         T0         2         0         ps         5500         mV           TRIG         F5         SS1         T0         2         0         ps         5500         mV           TRIG         F5         SS1         T0         2         0         ps         5000         mV           TRIG         F5         SS1         T0         2         0         ps         5000         mV           TRIG         F5         SS1         T0         2         0         ps         5000         mV           TRIG         F5         SS1         T0         2         0         ps         5000         mV           TRIG         F0         SS1         T0         2         0         ps         2500         mV           TRIG         F0         SS1         T0         2         0         ps         2500         mV |

#### Setup Web page

"General remote way" via LabVIEW software application or other PC software application.

V08/19

www.greenfieldtechnology.com 1 bis, rue Marcel Paul - 91300 Massy - FRANCE



## **Connector, Switch, Indicators**

| Front Pa                                             | nel                                          | Rear Panel |                                        |  |
|------------------------------------------------------|----------------------------------------------|------------|----------------------------------------|--|
| Indicators                                           |                                              | Connector  |                                        |  |
| OPT                                                  | Synchronized by optical network              | LAN        | LAN connection: RJ45 connector         |  |
| T1                                                   | Blinks at the trigger frequency of channel 1 | OPT        | Optical input: SC/PC connector         |  |
| T2                                                   | Blinks at the trigger frequency of channel 2 | CLK IN     | Clock input: BNC connector             |  |
| T3                                                   | Blinks at the trigger frequency of channel 3 | CLK OUT    | Clock output: BNC connector            |  |
| T4                                                   | Blinks at the trigger frequency of channel 4 | Т0         | T0 output: BNC connector               |  |
| T5                                                   | Blinks at the trigger frequency of channel 5 | T1 to T10  | T1 to T10 output pulses: BNC connector |  |
| PWR                                                  | Power supply ON                              | TRIG IN    | External Trigger Input: BNC connector  |  |
| T6                                                   | Blinks at the trigger frequency of channel 6 | INH        | Inhibition input: BNC connector        |  |
| T7                                                   | Blinks at the trigger frequency of channel 7 | Power      | AC power plug (90-240 V)               |  |
| T8 Blinks at the trigger frequency of channel 8      |                                              | Switch     |                                        |  |
| T9                                                   | Blinks at the trigger frequency of channel 9 | ON/OFF     | Power ON/OFF switch                    |  |
| T10                                                  | Blinks at the trigger frequency of channel10 |            |                                        |  |
| <ul> <li>Small keyboard for local control</li> </ul> |                                              | ]          |                                        |  |
| • D                                                  | isplay for local control                     | ]          |                                        |  |

## **Ordering information**

#### GFT1004 Delay Generator part numbering

GFT1004-X-X-X-X (Where "X" is option number)

#### Ordering examples

GFT1004-1-2 (GFT1004 with extension to 8 channels and optical input for timing system mode) GFT1004-5-7-3 (GFT1004 with extension to 10 channels, TTL level channel output, and clock output)

V08/19

www.greenfieldtechnology.com 1 bis, rue Marcel Paul – 91300 Massy – FRANCE